The significance of biological heterogeneity.

H Rubin
Author Information
  1. H Rubin: Department of Molecular and Cell Biology, University of California, Berkeley 94720.

Abstract

Heterogeneity of expression for a variety of characteristics is found among malignant cells in the organism and in culture. Normal cells are relatively uniform when organized in a tissue, but become heterogeneous for many characteristics when they are dispersed and grown in monolayer culture. The heterogenizing effect of growth in culture indicates that the morphology and behavior of normal cells is ordered by their topological relations in tissues and other homeostatic influences of the organism. Weakening of these ordering relations may contribute to malignant transformation, as it usually does in rodent cell culture. Although phenotypic differences among cells of a given type may be transient, they can be perpetuated by protracted exposure to selective conditions. Examples are cited of selection which leads to an adapted state that is heritable for many cell generations after removal of the selective conditions. Such heritable adaptations are analogous to the Dauermodifikationen, or lingering changes, first described in ciliated protozoa and shown there to be under cytoplasmic control. The concept of progressive state selection is introduced to account for heritable adaptation at the cellular level. It depends on the spontaneous occurrence of transient, variant states and their successive selection to progressively higher levels of adaptation to an altered microenvironment. Although the process is basically epigenetic, it may be stabilized by genetic change. The concept is consistent with our present knowledge of tumor development, including progression to metastasis, and with epigenetic aspects of normal development.

References

  1. Mutat Res. 1974 Jul;24(1):47-54 [PMID: 4843976]
  2. J Natl Cancer Inst. 1988 Mar 2;80(1):14-20 [PMID: 2892943]
  3. Immunobiology. 1980 Jul;157(2):89-98 [PMID: 6967852]
  4. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1860-4 [PMID: 2928308]
  5. Nature. 1982 Jun 17;297(5867):593-4 [PMID: 7088144]
  6. Cancer Res. 1987 Jan 15;47(2):486-92 [PMID: 3791236]
  7. J Cell Sci. 1988 Dec;91 ( Pt 4):571-6 [PMID: 3255757]
  8. Somat Cell Mol Genet. 1984 Jul;10(4):345-57 [PMID: 6589789]
  9. Nature. 1988 Sep 8;335(6186):142-5 [PMID: 3045565]
  10. Somat Cell Mol Genet. 1984 Jul;10(4):331-44 [PMID: 6589788]
  11. Mutat Res. 1971 Dec;13(4):403-19 [PMID: 5169173]
  12. Cancer Res. 1984 Aug;44(8):3317-23 [PMID: 6378365]
  13. J Natl Cancer Inst. 1985 Jun;74(6):1247-53 [PMID: 3889458]
  14. Cancer Res. 1988 Mar 1;48(5):1060-5 [PMID: 3277705]
  15. Int J Radiat Biol Relat Stud Phys Chem Med. 1965;9:275-90 [PMID: 14345643]
  16. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5121-5 [PMID: 6591182]
  17. Cancer Res. 1984 Jun;44(6):2259-65 [PMID: 6372991]
  18. Nature. 1963 Jul 6;199:7-11 [PMID: 14047955]
  19. Am J Clin Pathol. 1982 Jun;77(6):692-9 [PMID: 7091049]
  20. Cell. 1983 Jun;33(2):323-33 [PMID: 6407756]
  21. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4970-4 [PMID: 7029527]
  22. Science. 1980 Jan 4;207(4426):82-4 [PMID: 7350644]
  23. J Cell Physiol. 1984 Nov;121(2):341-50 [PMID: 6333428]
  24. Cancer Res. 1988 May 1;48(9):2512-8 [PMID: 3356012]
  25. J Exp Med. 1968 Mar 1;127(3):523-39 [PMID: 5636556]
  26. J Cell Sci. 1988 Aug;90 ( Pt 4):601-12 [PMID: 3253297]
  27. Invasion Metastasis. 1983;3(4):193-207 [PMID: 6588046]
  28. J Embryol Exp Morphol. 1983 Oct;77:201-20 [PMID: 6140294]
  29. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2928-32 [PMID: 268644]
  30. Cancer Res. 1980 Jul;40(7):2300-9 [PMID: 7190062]
  31. Dev Biol. 1968 May;17(5):603-16 [PMID: 4173146]
  32. Cell. 1982 Jun;29(2):483-92 [PMID: 6180833]
  33. J Natl Cancer Inst. 1986 Nov;77(5):1125-35 [PMID: 3464799]
  34. Proc Natl Acad Sci U S A. 1990 Jan;87(1):482-6 [PMID: 2296603]
  35. Virology. 1969 Jun;38(2):336-42 [PMID: 4182061]
  36. Radiat Res. 1964 Apr;21:584-611 [PMID: 14142188]
  37. Biochim Biophys Acta. 1982 Dec 21;695(2):97-112 [PMID: 6763878]
  38. Exp Cell Res. 1976 Dec;103(2):247-55 [PMID: 1001362]
  39. J Natl Cancer Inst. 1984 Feb;72(2):375-81 [PMID: 6582323]
  40. Virology. 1969 Jun;38(2):343-6 [PMID: 4306592]
  41. J Cell Biol. 1974 Jul;62(1):48-53 [PMID: 4407044]
  42. Br J Cancer. 1980 Sep;42(3):462-72 [PMID: 7426348]
  43. Cancer Res. 1981 Apr;41(4):1368-72 [PMID: 7214323]
  44. Cancer Res. 1980 Mar;40(3):725-33 [PMID: 6110477]
  45. J Cell Biol. 1963 May;17:299-313 [PMID: 13985244]
  46. Science. 1984 Jun 1;224(4652):998-1001 [PMID: 6719130]
  47. Cancer Metastasis Rev. 1985;4(2):173-92 [PMID: 3893685]
  48. Cancer Res. 1983 Sep;43(9):4291-6 [PMID: 6347369]
  49. Exp Cell Res. 1961 Dec;25:585-621 [PMID: 13905658]
  50. Science. 1982 Sep 10;217(4564):998-1003 [PMID: 7112116]
  51. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5547-51 [PMID: 6957880]
  52. J Biol Chem. 1981 Apr 25;256(8):3662-6 [PMID: 6938516]
  53. Proc Natl Acad Sci U S A. 1967 Sep;58(3):954-7 [PMID: 5233851]
  54. Cancer Res. 1983 Sep;43(9):4050-6 [PMID: 6871846]
  55. Somatic Cell Genet. 1979 Sep;5(5):641-51 [PMID: 531734]
  56. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5126-9 [PMID: 6591183]
  57. Proc Natl Acad Sci U S A. 1970 Jan;65(1):219-25 [PMID: 5263752]
  58. Proc Natl Acad Sci U S A. 1974 May;71(5):2062-6 [PMID: 4365584]
  59. Nature. 1984 Jan 5-11;307(5946):85-6 [PMID: 6690989]
  60. Clin Exp Metastasis. 1984 Oct-Dec;2(4):333-55 [PMID: 6543709]
  61. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4206-10 [PMID: 6933467]
  62. Cancer Res. 1980 Jul;40(7):2310-5 [PMID: 6992983]
  63. Adv Genet. 1947;1:263-358 [PMID: 20259287]
  64. Biochem Biophys Res Commun. 1974 Nov 27;61(2):564-7 [PMID: 4455235]
  65. J Natl Cancer Inst. 1985 May;74(5):1059-65 [PMID: 3858574]
  66. Somatic Cell Genet. 1982 May;8(3):307-17 [PMID: 7112348]
  67. Exp Cell Res. 1988 Feb;174(2):378-87 [PMID: 3338495]
  68. Mutat Res. 1978 Feb;49(2):275-96 [PMID: 625302]
  69. J Natl Cancer Inst. 1983 Aug;71(2):365-75 [PMID: 6576194]
  70. Int J Cancer. 1979 Aug;24(2):253-60 [PMID: 489166]
  71. Cancer Res. 1985 Jun;45(6):2590-9 [PMID: 3986798]
  72. J Cell Physiol. 1973 Aug;82(1):75-80 [PMID: 4729514]
  73. Cancer Res. 1985 Jul;45(7):3014-21 [PMID: 4005841]
  74. Cancer Res. 1978 Jul;38(7):2103-11 [PMID: 207423]
  75. Cancer Res. 1984 Nov;44(11):5242-8 [PMID: 6488183]
  76. Cell Biochem Funct. 1987 Jul;5(3):195-210 [PMID: 3301049]
  77. J Natl Cancer Inst. 1983 Jun;70(6):1087-96 [PMID: 6190034]
  78. Int J Cancer. 1981 Aug 15;28(2):165-73 [PMID: 6172389]
  79. Science. 1983 Sep 23;221(4617):1307-10 [PMID: 6612347]
  80. Virology. 1960 Sep;12:14-31 [PMID: 13744356]
  81. Science. 1968 Nov 29;162(3857):1024-6 [PMID: 4301647]

MeSH Term

Animals
Eukaryotic Cells
Genetic Variation
Humans
Neoplasms
Phenotype
Prokaryotic Cells

Word Cloud

Created with Highcharts 10.0.0cellsculturemayselectionheritablecharacteristicsamongmalignantorganismmanynormalrelationscellAlthoughtransientselectiveconditionsstateconceptadaptationepigeneticdevelopmentHeterogeneityexpressionvarietyfoundNormalrelativelyuniformorganizedtissuebecomeheterogeneousdispersedgrownmonolayerheterogenizingeffectgrowthindicatesmorphologybehaviororderedtopologicaltissueshomeostaticinfluencesWeakeningorderingcontributetransformationusuallyrodentphenotypicdifferencesgiventypecanperpetuatedprotractedexposureExamplescitedleadsadaptedgenerationsremovaladaptationsanalogousDauermodifikationenlingeringchangesfirstdescribedciliatedprotozoashowncytoplasmiccontrolprogressiveintroducedaccountcellularleveldependsspontaneousoccurrencevariantstatessuccessiveprogressivelyhigherlevelsalteredmicroenvironmentprocessbasicallystabilizedgeneticchangeconsistentpresentknowledgetumorincludingprogressionmetastasisaspectssignificancebiologicalheterogeneity

Similar Articles

Cited By