Effects of omega-3 fatty acids on vascular smooth muscle cells: reduction in arachidonic acid incorporation into inositol phospholipids.

N R Yerram, A A Spector
Author Information
  1. N R Yerram: Department of Biochemistry, University of Iowa, Iowa City.

Abstract

A rapid increase in arachidonic acid incorporation into phosphatidylinositol (PI) occurred following exposure of cultured porcine pulmonary artery smooth muscle cells to calcium ionophore A23187. This response was specific for PI and phosphatidic acid; none of the other phosphoglycerides showed any increase in arachidonic acid incorporation. The incorporation of [3H]inositol also was increased, indicating that complete synthesis of PI rather than only fatty acylation occurred in response to the ionophore. The presence of omega-3 fatty acids, especially eicosapentaenoic acid (EPA), reduced arachidonic acid but not inositol incorporation into PI. Stimulated incorporation of EPA also occurred under these conditions, suggesting that EPA replaces arachidonic acid in the newly synthesized pool of PI. Although much less arachidonic acid was incorporated into the polyphosphoinositides following exposure to the ionophore, arachidonic acid incorporation into these phosphorylated derivatives also decreased when EPA was present. These findings suggest that when omega-3 fatty acids are available, less arachidonic acid is channeled into the inositol phospholipids of activated smooth muscle cells because of replacement by EPA. This may represent a mechanism whereby omega-3 fatty acids, especially EPA, can accumulate in the metabolically active pools of inositol phospholipids and thereby possibly influence the properties or responsiveness of vascular smooth muscle.

References

  1. J Biol Chem. 1984 Jun 25;259(12):7615-21 [PMID: 6330066]
  2. Biochim Biophys Acta. 1984 Nov 14;796(2):190-8 [PMID: 6498210]
  3. N Engl J Med. 1985 May 9;312(19):1210-6 [PMID: 3990714]
  4. Arch Biochem Biophys. 1987 Feb 15;253(1):1-12 [PMID: 2949698]
  5. J Lipid Res. 1986 Jul;27(7):771-80 [PMID: 3760712]
  6. J Biol Chem. 1984 Mar 10;259(5):3152-9 [PMID: 6699010]
  7. Biochem J. 1986 May 15;236(1):235-42 [PMID: 3098231]
  8. Adv Lipid Res. 1978;16:1-125 [PMID: 362863]
  9. Biochim Biophys Acta. 1985 Feb 8;833(2):316-22 [PMID: 3871634]
  10. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5919-23 [PMID: 230492]
  11. Lancet. 1979 Sep 1;2(8140):433-5 [PMID: 89498]
  12. Arteriosclerosis. 1984 May-Jun;4(3):270-5 [PMID: 6712540]
  13. Lipids. 1983 Jan;18(1):42-9 [PMID: 6300604]
  14. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3292-6 [PMID: 6158043]
  15. Lipids. 1979 Mar;14(3):309-11 [PMID: 221772]
  16. N Engl J Med. 1986 Feb 20;314(8):488-500 [PMID: 3511384]
  17. Biochem J. 1981 Jan 15;194(1):283-91 [PMID: 6272727]
  18. J Lipid Res. 1964 Oct;5:600-8 [PMID: 14221106]
  19. J Lipid Res. 1985 Aug;26(8):930-9 [PMID: 2864379]
  20. J Neurochem. 1978 Oct;31(4):903-8 [PMID: 212534]
  21. Biochem J. 1987 Sep 15;246(3):669-79 [PMID: 3120699]
  22. N Engl J Med. 1985 May 9;312(19):1205-9 [PMID: 3990713]
  23. J Cell Biol. 1971 Jul;50(1):172-86 [PMID: 4327464]
  24. J Biol Chem. 1981 May 10;256(9):4153-5 [PMID: 6783655]
  25. N Engl J Med. 1985 May 9;312(19):1217-24 [PMID: 2985986]
  26. Methods Enzymol. 1981;72:626-31 [PMID: 6273691]
  27. J Biol Chem. 1985 May 25;260(10):6032-8 [PMID: 3922969]
  28. J Biol Chem. 1957 May;226(1):497-509 [PMID: 13428781]
  29. J Biol Chem. 1985 May 10;260(9):5315-22 [PMID: 2985588]
  30. Nature. 1984 Nov 22-28;312(5992):315-21 [PMID: 6095092]
  31. J Biol Chem. 1980 Mar 10;255(5):1790-2 [PMID: 6766454]
  32. J Biol Chem. 1983 May 10;258(9):5337-9 [PMID: 6853517]
  33. Methods Enzymol. 1982;86:511-7 [PMID: 7132768]
  34. Biochim Biophys Acta. 1986 Feb 12;875(2):369-81 [PMID: 3002484]
  35. Biochim Biophys Acta. 1979 May 25;573(2):394-402 [PMID: 375988]
  36. J Biol Chem. 1985 Feb 10;260(3):1358-61 [PMID: 3155733]
  37. J Cell Physiol. 1987 Oct;133(1):103-10 [PMID: 3117805]
  38. J Biol Chem. 1981 May 25;256(10):5215-9 [PMID: 6785279]
  39. Annu Rev Biochem. 1985;54:205-35 [PMID: 2992357]

Grants

  1. HL39308/NHLBI NIH HHS

MeSH Term

Animals
Arachidonic Acid
Arachidonic Acids
Calcimycin
Eicosapentaenoic Acid
Fatty Acids, Unsaturated
In Vitro Techniques
Muscle, Smooth, Vascular
Phosphatidylinositols
Swine

Chemicals

Arachidonic Acids
Fatty Acids, Unsaturated
Phosphatidylinositols
Arachidonic Acid
Calcimycin
Eicosapentaenoic Acid

Word Cloud

Created with Highcharts 10.0.0acidarachidonicincorporationEPAPIfattysmoothmuscleomega-3acidsinositoloccurredionophorealsophospholipidsincreasefollowingexposurecellsresponseespeciallylessvascularrapidphosphatidylinositolculturedporcinepulmonaryarterycalciumA23187specificphosphatidicnonephosphoglyceridesshowed[3H]inositolincreasedindicatingcompletesynthesisratheracylationpresenceeicosapentaenoicreducedStimulatedconditionssuggestingreplacesnewlysynthesizedpoolAlthoughmuchincorporatedpolyphosphoinositidesphosphorylatedderivativesdecreasedpresentfindingssuggestavailablechanneledactivatedreplacementmayrepresentmechanismwherebycanaccumulatemetabolicallyactivepoolstherebypossiblyinfluencepropertiesresponsivenessEffectscells:reduction

Similar Articles

Cited By