Artificial nucleosome positioning sequences.

T E Shrader, D M Crothers
Author Information
  1. T E Shrader: Department of Chemistry and Molecular Biophysics, Yale University, New Haven, CT 06511.

Abstract

We have used the emerging rules for the sequence dependence of DNA bendability to design and test a series of DNA molecules that incorporate strongly into nucleosomes. Competitive reconstitution experiments showed the superiority in histone octamer binding of DNA molecules in which segments consisting exclusively of A and T or G and C, separated by 2 base pairs (bp), are repeated with a 10-bp period. These repeated (A/T)3NN(G/C)3NN motifs are superior in nucleosome formation to natural positioning sequences and to other repeated motifs such as AANNNTTNNN and GGNNNCCNNN. Studies of different lengths of repetitive anisotropically flexible DNA showed that a segment of approximately 40 bp embedded in a 160-bp fragment is sufficient to generate nucleosome binding equivalent to that of natural nucleosome positioning sequences from 5S RNA genes. Bending requirements along the surface of the nucleosome seem to be quite constant, with no large jumps in binding free energy attributable to protein-induced kinks. The most favorable sequences incorporate into nucleosomes more strongly by 100-fold than bulk nucleosomal DNA, but differential bending free energies are small when normalized to the number of bends: a free energy difference of only about 100 cal/mol per bend (1 cal = 4.184 J) distinguishes the best bending sequences and bulk DNA. We infer that the distortion energy of DNA bending in the nucleosome is only weakly dependent on DNA sequence.

References

  1. J Mol Biol. 1978 Sep 15;124(2):391-420 [PMID: 568667]
  2. Cell. 1987 Dec 4;51(5):733-40 [PMID: 3677171]
  3. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3816-20 [PMID: 6933438]
  4. Nature. 1988 Jun 30;333(6176):824-9 [PMID: 2838756]
  5. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4633-7 [PMID: 3387430]
  6. Nature. 1988 Sep 22;335(6188):321-9 [PMID: 3419502]
  7. Cell. 1988 Dec 2;55(5):743-4 [PMID: 3191529]
  8. Cell. 1988 Dec 23;55(6):945-53 [PMID: 3060264]
  9. J Mol Biol. 1988 Nov 5;204(1):109-27 [PMID: 3063825]
  10. J Biomol Struct Dyn. 1988 Aug;6(1):105-20 [PMID: 3271513]
  11. Nature. 1981 Aug 13;292(5824):579-80 [PMID: 7254354]
  12. Gene. 1981 May;13(4):347-53 [PMID: 6266922]
  13. Biopolymers. 1981 Jul;20(7):1503-35 [PMID: 7023566]
  14. Proc Natl Acad Sci U S A. 1983 Jan;80(1):51-5 [PMID: 6572008]
  15. Cell. 1984 Apr;36(4):933-42 [PMID: 6323028]
  16. Cell. 1984 Jun;37(2):359-65 [PMID: 6722879]
  17. Cell. 1984 Jul;37(3):889-901 [PMID: 6540146]
  18. Nature. 1984 Oct 11-17;311(5986):532-7 [PMID: 6482966]
  19. Nature. 1985 May 16-22;315(6016):250-2 [PMID: 3889654]
  20. Cell. 1985 Oct;42(3):799-808 [PMID: 2996776]
  21. J Biol Chem. 1985 Dec 5;260(28):15318-24 [PMID: 2415517]
  22. Cell. 1986 Mar 14;44(5):697-704 [PMID: 3081263]
  23. EMBO J. 1985 Dec 16;4(13A):3473-82 [PMID: 4092686]
  24. J Mol Biol. 1985 Dec 20;186(4):773-90 [PMID: 3912515]
  25. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5469-73 [PMID: 3090544]
  26. EMBO J. 1986 Oct;5(10):2689-96 [PMID: 3536481]
  27. J Mol Biol. 1986 May 5;189(1):179-88 [PMID: 3783673]
  28. J Mol Biol. 1986 Jul 20;190(2):177-90 [PMID: 3540310]
  29. J Mol Biol. 1986 Oct 20;191(4):659-75 [PMID: 3806678]
  30. Cell. 1987 Apr 24;49(2):203-10 [PMID: 3568125]
  31. Nature. 1987 Aug 6-12;328(6130):554-7 [PMID: 2441260]
  32. Cell. 1987 Aug 28;50(5):801-8 [PMID: 3621345]
  33. Nature. 1987 Sep 17-23;329(6136):263-6 [PMID: 3627268]
  34. EMBO J. 1987 Aug;6(8):2321-8 [PMID: 2822386]
  35. Nucleic Acids Res. 1979 Dec 20;7(8):2457-67 [PMID: 523323]

Grants

  1. CA15583/NCI NIH HHS
  2. GM21966/NIGMS NIH HHS

MeSH Term

Animals
Base Sequence
Chickens
Chromatin
Cloning, Molecular
DNA
Genetic Vectors
Histones
Molecular Sequence Data
Nucleic Acid Conformation
Nucleosomes
Oligodeoxyribonucleotides
Structure-Activity Relationship

Chemicals

Chromatin
Histones
Nucleosomes
Oligodeoxyribonucleotides
DNA

Word Cloud

Created with Highcharts 10.0.0DNAnucleosomesequencesbindingrepeatedpositioningfreeenergybendingsequencemoleculesincorporatestronglynucleosomesshowedbp3NNmotifsnaturalbulkusedemergingrulesdependencebendabilitydesigntestseriesCompetitivereconstitutionexperimentssuperiorityhistoneoctamersegmentsconsistingexclusivelyTGCseparated2basepairs10-bpperiodA/TG/CsuperiorformationAANNNTTNNNGGNNNCCNNNStudiesdifferentlengthsrepetitiveanisotropicallyflexiblesegmentapproximately40embedded160-bpfragmentsufficientgenerateequivalent5SRNAgenesBendingrequirementsalongsurfaceseemquiteconstantlargejumpsattributableprotein-inducedkinksfavorable100-foldnucleosomaldifferentialenergiessmallnormalizednumberbends:difference100cal/molperbend1cal=4184JdistinguishesbestinferdistortionweaklydependentArtificial

Similar Articles

Cited By