The genetic control of protein synthesis: The haemoglobin model.

D J Weatherall
Author Information

Abstract

The major steps in haemoglobin synthesis in red cell precursors are now worked out and only details of specific mechanisms remain to be filled in. Thus the major steps in the production of a globin chain are the transcription of large-molecular-weight precursor mRNA (Hn RNA) from the appropriate gene, the cleavage of Hn RNA to produce definitive template mRNA which diffuses into the cell cytoplasm, the processes of chain initiation, translation, and termination, and finally the association of subunits to form a stable tetramer. From what little information there is it appears that this complex series of events is controlled at several levels but that the major control mechanisms are mediated in the processes of transcription rather than translation. There is increasing evidence that the chromatin proteins, particularly the acidic proteins, have specific functions in maintaining areas of DNA repressed and the activation of the haemoglobin loci results from complex interactions with external inducers, the nature of which is not yet known. Virtually nothing is known about the factors involved in the switch from the intrauterine to adult haemoglobins although this appears to be a coordinated event throughout the erythropoietic tissue of the fetus. The isolation and characterization of human mRNA has made possible both the study of the function of thalassaemic mRNA in heterologous systems and , more recently, its quantitation in abnormal red-cell precursors. Furthermore the ability to make cDNA using viral re verse transcriptase has made possible the estimation of the number of haemoglobin genes, both in normal human subjects and in those with different forms of thalassaemia and other genetic disorders of haemoglobin production.

References

  1. Nat New Biol. 1973 Sep 5;245(140):23-4 [PMID: 4516937]
  2. Science. 1969 Jul 25;165(3891):349-57 [PMID: 5789433]
  3. Nature. 1968 Nov 2;220(5166):481-3 [PMID: 5686164]
  4. J Clin Invest. 1971 Dec;50(12):2755-60 [PMID: 5129324]
  5. Arch Biochem Biophys. 1972 Dec;153(2):850-3 [PMID: 4676910]
  6. J Mol Biol. 1961 Jun;3:318-56 [PMID: 13718526]
  7. Nature. 1968 Nov 16;220(5168):664-8 [PMID: 5688140]
  8. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1886-90 [PMID: 4124307]
  9. Biochim Biophys Acta. 1965 Jul 15;103(3):409-17 [PMID: 5853491]
  10. Proc Natl Acad Sci U S A. 1963 Feb 15;49:240-8 [PMID: 13991616]
  11. Nat New Biol. 1973 Jan 31;241(109):150-2 [PMID: 4512619]
  12. FEBS Lett. 1972 Aug 15;24(3):310-314 [PMID: 11946695]
  13. J Med Genet. 1973 Mar;10(1):50-64 [PMID: 4572642]
  14. Nature. 1971 Dec 10;234(5328):337-40 [PMID: 4944483]
  15. J Clin Invest. 1971 Nov;50(11):2458-60 [PMID: 5096528]
  16. Nature. 1971 Nov 5;234(5323):25-7 [PMID: 4942881]
  17. Lancet. 1973 Jun 16;1(7816):1350-4 [PMID: 4122742]
  18. Proc Natl Acad Sci U S A. 1972 Jan;69(1):7-10 [PMID: 4500558]
  19. Proc Natl Acad Sci U S A. 1968 Jun;60(2):537-44 [PMID: 5248810]
  20. Nature. 1972 Jun 9;237(5354):340-2 [PMID: 4557400]
  21. Ann N Y Acad Sci. 1964 Oct 7;119:523-39 [PMID: 14219431]
  22. Biochim Biophys Acta. 1971 Sep 30;247(1):109-12 [PMID: 5160749]
  23. Prog Hematol. 1964;4:1-47 [PMID: 14272797]
  24. Ann N Y Acad Sci. 1974;232(0):107-24 [PMID: 4528800]
  25. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1809-13 [PMID: 4124305]
  26. J Biol Chem. 1972 Jun 10;247(11):3622-9 [PMID: 4624122]
  27. Nature. 1973 Jul 20;244(5412):162-5 [PMID: 4583496]
  28. Science. 1964 May 15;144(3620):816-20 [PMID: 14149392]
  29. Nat New Biol. 1973 Dec 12;246(154):184-6 [PMID: 4519001]
  30. Nature. 1972 Aug 25;238(5365):444-6 [PMID: 4561852]

MeSH Term

Chromosome Mapping
Chromosomes, Human, 1-3
Erythrocytes
Fetal Hemoglobin
Gene Expression Regulation
Genes
Heme
Hemoglobins
Hemoglobins, Abnormal
Humans
Models, Genetic
Peptide Chain Elongation, Translational
Peptide Chain Initiation, Translational
Peptide Chain Termination, Translational
Protein Biosynthesis
RNA, Messenger

Chemicals

Hemoglobins
Hemoglobins, Abnormal
RNA, Messenger
Heme
Fetal Hemoglobin

Word Cloud

Created with Highcharts 10.0.0haemoglobinmRNAmajorstepscellprecursorsspecificmechanismsproductionchaintranscriptionHnRNAprocessestranslationappearscomplexcontrolproteinsknownhumanmadepossiblegeneticsynthesisrednowworkeddetailsremainfilledThusglobinlarge-molecular-weightprecursorappropriategenecleavageproducedefinitivetemplatediffusescytoplasminitiationterminationfinallyassociationsubunitsformstabletetramerlittleinformationserieseventscontrolledseverallevelsmediatedratherincreasingevidencechromatinparticularlyacidicfunctionsmaintainingareasDNArepressedactivationlociresultsinteractionsexternalinducersnatureyetVirtuallynothingfactorsinvolvedswitchintrauterineadulthaemoglobinsalthoughcoordinatedeventthroughouterythropoietictissuefetusisolationcharacterizationstudyfunctionthalassaemicheterologoussystemsrecentlyquantitationabnormalred-cellFurthermoreabilitymakecDNAusingviralreversetranscriptaseestimationnumbergenesnormalsubjectsdifferentformsthalassaemiadisordersproteinsynthesis:model

Similar Articles

Cited By