Cerebellar connections in Xenopus laevis. An HRP study.

A Gonzalez, H J ten Donkelaar, R de Boer-van Huizen
Author Information

Abstract

In the present study the cerebellar afferents in the clawed toad Xenopus laevis have been analysed with the horseradish peroxidase (HRP) technique. In addition, data on the efferent connections of the cerebellum could be gathered, based on the phenomenon of anterograde transport of HRP. Cerebellar afferents in Xenopus laevis appear to arise mainly in the vestibular nuclear complex, in a primordial inferior olive and in the spinal cord. Both primary (arising in the ipsilateral vestibular ganglion) and secondary vestibulocerebellar projections were found. A distinct crossed olivocerebellar projection to the molecular layer of the cerebellum was found. Two spinocerebellar pathways are present in Xenopus laevis, as in other anurans, viz. an ipsilateral dorsal spinocerebellar tract, presumably arising in dorsal root ganglion cells, and a larger ventral pathway, bilaterally arising in the spinal gray matter. The latter tract mainly originates in the ventrolateral and ventromedial spinal fields. Furthermore, a secondary trigeminocerebellar projection arising in the descending trigeminal nucleus, a cerebellar projection arising in the dorsal column nucleus, a small projection arising in a possible primordium of the mammalian nucleus prepositus hypoglossi, a raphecerebellar projection, and a small cerebellar projection originating in the ipsilateral mesencephalic tegmentum were demonstrated. Cerebellar efferents in Xenopus laevis are mainly aimed at the vestibular nuclear complex. A distinct ipsilateral cerebellovestibular projection present throughout the vestibular nuclear complex presumably arises in Purkyn ĕ cells, a smaller contralateral projection in the cerebellar nucleus. In addition, a small primordial brachium conjunctivum, projecting to the red nucleus, was noted. The basic pattern of cerebellar connections as suggested for terrestrial vertebrates (ten Donkelaar and Bangma 1984) is also found in the permanently aquatic anuran Xenopus laevis.

References

  1. Neuroscience. 1982;7(9):2089-103 [PMID: 7145089]
  2. J Hirnforsch. 1976;17(1):81-9 [PMID: 1085783]
  3. J Comp Neurol. 1973 Jun 15;149(4):477-96 [PMID: 4123678]
  4. J Comp Neurol. 1981 May 20;198(3):421-33 [PMID: 6972387]
  5. Anat Rec. 1968 Feb;160(2):279-88 [PMID: 5651675]
  6. Adv Anat Embryol Cell Biol. 1980;62:v-viii, 1-90 [PMID: 6158846]
  7. J Comp Neurol. 1980 Jan 1;189(1):1-29 [PMID: 7351442]
  8. Anat Embryol (Berl). 1982;163(4):461-73 [PMID: 7091712]
  9. Neuroscience. 1980;5(7):1311-22 [PMID: 6967570]
  10. J Comp Neurol. 1977 Aug 1;174(3):535-52 [PMID: 903417]
  11. Anat Rec. 1968 Apr;160(4):719-27 [PMID: 5666661]
  12. J Comp Neurol. 1980 Feb 15;189(4):671-98 [PMID: 7381045]
  13. J Neurophysiol. 1965 Nov;28(6):1132-54 [PMID: 5327587]
  14. J Histochem Cytochem. 1981 Jun;29(6):775 [PMID: 7252134]
  15. J Comp Neurol. 1979 Feb 15;183(4):817-31 [PMID: 762274]
  16. Prog Brain Res. 1972;37:55-67 [PMID: 4642054]
  17. J Comp Neurol. 1973 Nov 15;152(2):193-9 [PMID: 4543413]
  18. J Comp Neurol. 1977 May 15;173(2):219-30 [PMID: 300743]
  19. Neuroscience. 1981;6(8):1567-90 [PMID: 7266879]
  20. Brain Behav Evol. 1981;19(3-4):205-13 [PMID: 6799147]
  21. J Comp Neurol. 1977 Jun 15;173(4):613-28 [PMID: 864026]
  22. Brain Res. 1977 Feb;121(2):362-7 [PMID: 299827]
  23. Brain Res. 1970 Mar 17;18(3):560-4 [PMID: 4252043]
  24. J Comp Neurol. 1980 Feb 15;189(4):615-70 [PMID: 7381044]
  25. J Comp Neurol. 1978 Mar 1;178(1):157-76 [PMID: 75892]
  26. Neuroscience. 1979;4(12):2061-71 [PMID: 316879]
  27. Brain Res. 1979 Jun 8;168(3):595-601 [PMID: 86380]
  28. Prog Brain Res. 1982;57:25-67 [PMID: 7156397]
  29. J Hirnforsch. 1980;21(4):381-92 [PMID: 6969738]
  30. Brain Behav Evol. 1972;5(1):70-88 [PMID: 4116203]
  31. J Histochem Cytochem. 1978 Feb;26(2):106-17 [PMID: 24068]
  32. J Hirnforsch. 1977;18(3):229-40 [PMID: 303653]
  33. Brain Behav Evol. 1974;10(1-3):157-69 [PMID: 4549019]
  34. Exp Brain Res. 1969 Aug 19;9(1):1-15 [PMID: 5808479]
  35. J Comp Neurol. 1983 Jan 10;213(2):199-219 [PMID: 6841669]
  36. Neuroscience. 1981;6(11):2297-312 [PMID: 7329548]
  37. J Comp Neurol. 1983 Jan 20;213(3):310-26 [PMID: 6187781]
  38. Proc R Soc Lond B Biol Sci. 1982 Oct 22;216(1204):279-97 [PMID: 6129631]
  39. J Comp Neurol. 1982 May 20;207(3):255-73 [PMID: 7107986]

MeSH Term

Animals
Brain Mapping
Cerebellum
Female
Horseradish Peroxidase
Neural Pathways
Olivary Nucleus
Xenopus laevis

Chemicals

Horseradish Peroxidase

Word Cloud

Created with Highcharts 10.0.0projectionXenopuslaevisarisingcerebellarnucleusvestibularipsilateralpresentHRPconnectionsCerebellarmainlynuclearcomplexspinalfounddorsalsmallstudyafferentsadditioncerebellumprimordialganglionsecondarydistinctspinocerebellartractpresumablycellsclawedtoadanalysedhorseradishperoxidasetechniquedataefferentgatheredbasedphenomenonanterogradetransportappearariseinferiorolivecordprimaryvestibulocerebellarprojectionscrossedolivocerebellarmolecularlayerTwopathwaysanuransvizrootlargerventralpathwaybilaterallygraymatterlatteroriginatesventrolateralventromedialfieldsFurthermoretrigeminocerebellardescendingtrigeminalcolumnpossibleprimordiummammalianprepositushypoglossiraphecerebellaroriginatingmesencephalictegmentumdemonstratedefferentsaimedcerebellovestibularthroughoutarisesPurkynĕsmallercontralateralbrachiumconjunctivumprojectingrednotedbasicpatternsuggestedterrestrialvertebratestenDonkelaarBangma1984alsopermanentlyaquaticanuran

Similar Articles

Cited By