Naturally occurring macrolide-lincosamide-streptogramin B resistance in Bacillus licheniformis.

A Docherty, G Grandi, R Grandi, T J Gryczan, A G Shivakumar, D Dubnau
Author Information

Abstract

Resistance to the macrolide-lincosamide-streptogramin B (MLS) group of antibiotics is widespread and of clinical importance. B. Weisblum and his coworkers have demonstrated that this resistance is associated with methylation of the 23S ribosomal ribonucleic acid of the large ribosomal subunit which results in a diminished affinity of this organelle for these antibiotics (Lai et al, J. Mol. Biol. 74:67-72, 1973). We report that 10 of 15 natural isolates of Bacillus licheniformis, a common soil organism, are resistant to the MLS antibiotics. The properties of this resistance (high level of tolerance for erythromycin, broad cross-resistance spectrum, and inducibility) suggest that resistance is conferred as described above. The resistance determinant from one of these strains was cloned onto a B. subtilis plasmid vector, and the resulting hybrid plasmid (pBD90) was used to prepare radioactive probe deoxyribonucleic acid for hybridization studies. All of the resistance B. licheniformis strains studied exhibited homology with the pBD90 insert. Plasmid pBD90 showed no homology to the following staphylococcal and streptococcal MLS-resistance plasmids: pE194, pE5, pAM77, pI258. Plasmids pE194 and pE5, on the other hand, carry homologous MLS genes but showed no detectable homology to one another in their replication genes. pBD90 specified a 35,000-dalton erythromycin-inducible protein, detectable in minicells, which therefore appears different from the 29,000-dalton inducible resistance protein specified by pE194. We conclude that there are at least three distinct MLS resistance determinants to be found among gram-positive bacteria.

References

  1. Proc Natl Acad Sci U S A. 1965 Aug;54(2):491-8 [PMID: 4956287]
  2. J Bacteriol. 1966 Mar;91(3):1012-20 [PMID: 5929742]
  3. J Gen Microbiol. 1965 Oct;41(1):7-21 [PMID: 5883699]
  4. J Bacteriol. 1968 Apr;95(4):1335-42 [PMID: 5646621]
  5. Genetics. 1969 Jul;62(3):697-710 [PMID: 4989093]
  6. Proc Natl Acad Sci U S A. 1971 Apr;68(4):856-60 [PMID: 5279527]
  7. J Bacteriol. 1971 Jun;106(3):835-47 [PMID: 4397638]
  8. Ann Inst Pasteur (Paris). 1972 Dec;123(6):755-9 [PMID: 4347774]
  9. J Bacteriol. 1973 May;114(2):860-73 [PMID: 4196259]
  10. J Mol Biol. 1973 Feb 15;74(1):67-72 [PMID: 4731016]
  11. J Gen Microbiol. 1973 Dec;79(2):343-5 [PMID: 4772094]
  12. Mol Gen Genet. 1973 Dec 20;127(2):157-61 [PMID: 4203931]
  13. Mol Gen Genet. 1973 Dec 20;127(2):175-89 [PMID: 4589347]
  14. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1184-8 [PMID: 1055375]
  15. Antimicrob Agents Chemother. 1974 May;5(5):534-7 [PMID: 4618462]
  16. Antimicrob Agents Chemother. 1974 May;5(5):538-40 [PMID: 4462467]
  17. Antimicrob Agents Chemother. 1976 Nov;10(5):795-801 [PMID: 795369]
  18. Arch Roum Pathol Exp Microbiol. 1976 Jan-Jun;35(1-2):111-8 [PMID: 1008685]
  19. Antimicrob Agents Chemother. 1977 Apr;11(4):669-74 [PMID: 856018]
  20. J Mol Biol. 1977 Jun 15;113(1):237-51 [PMID: 881736]
  21. J Mol Biol. 1977 Jul;114(1):153-68 [PMID: 20509]
  22. J Bacteriol. 1978 Apr;134(1):318-29 [PMID: 418061]
  23. Antimicrob Agents Chemother. 1978 May;13(5):884-7 [PMID: 96738]
  24. N Engl J Med. 1978 Oct 5;299(14):735-40 [PMID: 29219]
  25. Nucleic Acids Res. 1978 Oct;5(10):3457-67 [PMID: 724493]
  26. J Bacteriol. 1979 Jan;137(1):635-43 [PMID: 104975]
  27. Mol Gen Genet. 1978 Nov 9;166(3):259-67 [PMID: 105241]
  28. Nucleic Acids Res. 1979 Jan;6(1):1-15 [PMID: 424284]
  29. Proc Natl Acad Sci U S A. 1979 Jan;76(1):400-4 [PMID: 284355]
  30. J Bacteriol. 1979 Mar;137(3):1464-7 [PMID: 438126]
  31. Plasmid. 1979 Apr;2(2):261-8 [PMID: 451051]
  32. Plasmid. 1979 Apr;2(2):279-89 [PMID: 109873]
  33. J Bacteriol. 1979 Jun;138(3):990-8 [PMID: 110774]
  34. J Bacteriol. 1980 Jan;141(1):246-53 [PMID: 6243622]
  35. J Bacteriol. 1980 Mar;141(3):1178-82 [PMID: 6245061]
  36. Methods Enzymol. 1979;68:220-42 [PMID: 94421]
  37. Methods Enzymol. 1980;65(1):499-560 [PMID: 6246368]
  38. Mol Gen Genet. 1980 Feb;177(3):459-67 [PMID: 6246400]
  39. Mol Gen Genet. 1980;179(2):241-52 [PMID: 6258012]

Grants

  1. AI-10311/NIAID NIH HHS

MeSH Term

Anti-Bacterial Agents
Bacillus
Bacterial Proteins
Cloning, Molecular
Drug Resistance, Microbial
Erythromycin
Genes
Nucleic Acid Hybridization
Plasmids
Virginiamycin

Chemicals

Anti-Bacterial Agents
Bacterial Proteins
Virginiamycin
Erythromycin

Word Cloud

Created with Highcharts 10.0.0resistanceBMLSpBD90antibioticslicheniformishomologypE194macrolide-lincosamide-streptograminribosomalacidBacillusonestrainsplasmidshowedpE5genesdetectablespecified000-daltonproteinResistancegroupwidespreadclinicalimportanceWeisblumcoworkersdemonstratedassociatedmethylation23SribonucleiclargesubunitresultsdiminishedaffinityorganelleLaietalJMolBiol74:67-721973report1015naturalisolatescommonsoilorganismresistantpropertieshighleveltoleranceerythromycinbroadcross-resistancespectruminducibilitysuggestconferreddescribeddeterminantclonedontosubtilisvectorresultinghybridusedprepareradioactiveprobedeoxyribonucleichybridizationstudiesstudiedexhibitedinsertPlasmidfollowingstaphylococcalstreptococcalMLS-resistanceplasmids:pAM77pI258Plasmidshandcarryhomologousanotherreplication35erythromycin-inducibleminicellsthereforeappearsdifferent29inducibleconcludeleastthreedistinctdeterminantsfoundamonggram-positivebacteriaNaturallyoccurring

Similar Articles

Cited By