Observations on the development of descending pathways from the brain stem to the spinal cord in the clawed toad Xenopus laevis.

H J ten Donkelaar, R de Boer-van Huizen
Author Information

Abstract

Anurans such as the clawed toad Xenopus laevis offer a unique opportunity to study the ontogeny of descending pathways to the spinal cord. Their transition from aquatic limbless tadpole to juvenile toad occurs over a protracted period time during which the animal is accessible for experimental studies. In Xenopus laevis tadpoles the development of descending pathways has been studied from early limb-bud stage on (stage 50) with the aid of HRP slow-release gels. In stage 50, cells of origin of descending supraspinal pathways were already present throughout the reticular formation (including the interstitial nucleus of the fasciculus longitudinalis medialis) and in the vestibular nuclear complex. Also the giant Mauthner cells project to the cord at this stage. A spinal projection from the anuran homologue of the nucleus ruber of higher vertebrates does not appear before stage 58, i.e., when the hindlimbs are used for locomotion. Hypothalamospinal projections appear for the first time at stage 57. These observations in Xenopus laevis tadpoles suggest that reticulospinal and vestibulospinal projections innervate spinal segments very early in development, whereas the anuran red nucleus projects spinal ward definitely later in development.

References

  1. Physiol Rev. 1979 Oct;59(4):1007-77 [PMID: 227003]
  2. J Hirnforsch. 1976;17(1):81-9 [PMID: 1085783]
  3. J Exp Med. 1966 Dec 1;124(6):1123-34 [PMID: 5925318]
  4. Q Rev Biol. 1951 Mar;26(1):17-34 [PMID: 14828054]
  5. J Comp Neurol. 1979 May 1;185(1):1-21 [PMID: 429610]
  6. Anat Embryol (Berl). 1980;161(2):197-213 [PMID: 7053121]
  7. J Comp Neurol. 1976 Jun 15;167(4):443-63 [PMID: 1270629]
  8. J Comp Neurol. 1980 Feb 15;189(4):671-98 [PMID: 7381045]
  9. J Comp Neurol. 1979 Feb 15;183(4):817-31 [PMID: 762274]
  10. J Comp Neurol. 1978 Sep 15;181(2):271-89 [PMID: 690268]
  11. Z Anat Entwicklungsgesch. 1972;136(2):168-91 [PMID: 4339562]
  12. Anat Rec. 1946 Jan;94:7-13 [PMID: 21013391]
  13. Brain Res. 1979 Jun 8;168(3):595-601 [PMID: 86380]
  14. J Histochem Cytochem. 1978 Feb;26(2):106-17 [PMID: 24068]
  15. J Comp Neurol. 1981 Feb 1;195(4):627-41 [PMID: 7462445]
  16. J Hirnforsch. 1977;18(3):229-40 [PMID: 303653]
  17. Neuroscience. 1981;6(11):2297-312 [PMID: 7329548]
  18. Anat Embryol (Berl). 1979 Jul 26;156(3):301-18 [PMID: 475000]
  19. J Embryol Exp Morphol. 1968 May;19(3):415-31 [PMID: 5667411]
  20. Brain Res. 1981 Aug;254(1):163-8 [PMID: 7272768]
  21. Neuroscience. 1980;5(5):821-33 [PMID: 6997774]

MeSH Term

Animals
Brain Stem
Hypothalamus
Red Nucleus
Reticular Formation
Spinal Cord
Time Factors
Vestibular Nuclei
Xenopus laevis

Word Cloud

Created with Highcharts 10.0.0stagespinalXenopuslaevisdescendingpathwaysdevelopmenttoadcordnucleusclawedtimetadpolesearly50cellsanuranappearprojectionsAnuransofferuniqueopportunitystudyontogenytransitionaquaticlimblesstadpolejuvenileoccursprotractedperiodanimalaccessibleexperimentalstudiesstudiedlimb-budaidHRPslow-releasegelsoriginsupraspinalalreadypresentthroughoutreticularformationincludinginterstitialfasciculuslongitudinalismedialisvestibularnuclearcomplexAlsogiantMauthnerprojectprojectionhomologueruberhighervertebrates58iehindlimbsusedlocomotionHypothalamospinalfirst57observationssuggestreticulospinalvestibulospinalinnervatesegmentswhereasredprojectswarddefinitelylaterObservationsbrainstem

Similar Articles

Cited By