Modified curved DNA that could allow local DNA underwinding at the nucleosomal pseudodyad fails to position a nucleosome in vivo.

H G Patterton, R T Simpson
Author Information
  1. H G Patterton: LCDB/NIDDK, National Institutes of Health, Bethesda, MD 20892-2715, USA.

Abstract

In competitive in vitro reconstitution experiments synthetic DNA composed of tandem repeats of the repetitive sequence (A/T)3NN(G/C)3NN, specifically the 20 bp 'TG sequence' (5'-TCGGTGTTAGAGCCTGTAAC-3'), was reported to associate with the histone octamer with an affinity higher than that of nucleosomally derived DNA. However, at least two groups have independently shown that tandem repeats of the TG sequence do not accommodate a stably positioned nucleosome in vivo. It was suggested that the anisotropic flexibility of the TG sequence, governed by a 10 bp sequence periodicity, is incompatible with the required underwinding of the DNA helix at the nucleosome pseudodyad while maintaining a bending preference that can be accommodated in the remainder of the nucleosome. Here we test this hypothesis directly by studying the in vivo nucleosomal structure of modified TG sequences designed to accommodate underwinding at the pseudodyad. We show that these modifications are not sufficient to allow stable incorporation of the TG sequence repeat into a nucleosome in vivo, but do note invasion from one end of the TG heptamer of a translationally random but rotationally constrained nucleosome. We discuss possible reasons for the absence of nucleosomes from the TG sequence in vivo.

References

  1. Science. 1974 May 24;184(4139):865-8 [PMID: 4825888]
  2. Nucleic Acids Res. 1990 Apr 11;18(7):1749-56 [PMID: 2186365]
  3. Nature. 1977 Sep 1;269(5623):29-36 [PMID: 895884]
  4. Nucleic Acids Res. 1979 Jan;6(1):41-56 [PMID: 424299]
  5. Nucleic Acids Res. 1979 Apr;6(4):1449-65 [PMID: 450703]
  6. Nucleic Acids Res. 1981 Sep 11;9(17):4251-65 [PMID: 6272201]
  7. Nucleic Acids Res. 1981 Sep 11;9(17):4267-83 [PMID: 6272202]
  8. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991-5 [PMID: 6326095]
  9. Nature. 1985 May 16-22;315(6016):250-2 [PMID: 3889654]
  10. Cell. 1985 Aug;42(1):281-90 [PMID: 4016952]
  11. Cell. 1985 Oct;42(3):799-808 [PMID: 2996776]
  12. J Mol Biol. 1985 Dec 20;186(4):773-90 [PMID: 3912515]
  13. J Mol Biol. 1986 Aug 20;190(4):639-45 [PMID: 3023642]
  14. J Mol Biol. 1986 Oct 20;191(4):659-75 [PMID: 3806678]
  15. Nucleic Acids Res. 1987 Jan 12;15(1):247-65 [PMID: 3029673]
  16. J Mol Biol. 1986 Dec 20;192(4):907-18 [PMID: 3586013]
  17. J Mol Biol. 1987 May 5;195(1):143-73 [PMID: 3656408]
  18. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6644-8 [PMID: 3477794]
  19. Nucleic Acids Res. 1988 Jan 25;16(2):501-17 [PMID: 3340546]
  20. Nucleic Acids Res. 1990 Jun 25;18(12):3495-502 [PMID: 2194162]
  21. EMBO J. 1990 Aug;9(8):2523-8 [PMID: 2196175]
  22. Annu Rev Biochem. 1990;59:755-81 [PMID: 2197990]
  23. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7405-9 [PMID: 2170977]
  24. J Mol Biol. 1990 Nov 5;216(1):69-84 [PMID: 2172553]
  25. J Mol Biol. 1990 Nov 20;216(2):363-74 [PMID: 2174975]
  26. Prog Nucleic Acid Res Mol Biol. 1991;40:143-84 [PMID: 2031082]
  27. J Mol Biol. 1991 Jun 5;219(3):391-2 [PMID: 2051479]
  28. Nucleic Acids Res. 1991 Oct 25;19(20):5791 [PMID: 1945859]
  29. Gene. 1992 Jan 2;110(1):119-22 [PMID: 1544568]
  30. EMBO J. 1992 Mar;11(3):1187-93 [PMID: 1547779]
  31. J Mol Biol. 1993 Feb 5;229(3):637-55 [PMID: 8433364]
  32. Nucleic Acids Res. 1993 Sep 25;21(19):4653-4 [PMID: 8233811]
  33. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10489-93 [PMID: 8248135]
  34. Bioessays. 1994 Mar;16(3):165-70 [PMID: 8166669]
  35. Mol Cell Biol. 1994 Jun;14(6):4002-10 [PMID: 8196639]
  36. Cell. 1988 Feb 26;52(4):535-44 [PMID: 2830026]
  37. Philos Trans R Soc Lond B Biol Sci. 1987 Dec 15;317(1187):537-61 [PMID: 2894688]
  38. FEBS Lett. 1988 May 23;232(2):263-8 [PMID: 3378619]
  39. Nucleic Acids Res. 1988 Aug 11;16(15):7351-67 [PMID: 3045756]
  40. Cell. 1988 Dec 23;55(6):945-53 [PMID: 3060264]
  41. EMBO J. 1989 Jan;8(1):229-38 [PMID: 2714251]
  42. J Mol Biol. 1989 May 5;207(1):183-92 [PMID: 2738923]
  43. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7418-22 [PMID: 2798415]
  44. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9817-21 [PMID: 2690074]
  45. J Biomol Struct Dyn. 1984 Oct;2(2):361-85 [PMID: 6400941]
  46. Mol Cell Biol. 1990 May;10(5):2247-60 [PMID: 2183026]
  47. Proc Natl Acad Sci U S A. 1975 May;72(5):1843-7 [PMID: 168578]

MeSH Term

Base Sequence
DNA
Deoxyribonuclease I
Histones
Molecular Sequence Data
Nucleic Acid Conformation
Nucleosomes
Oligodeoxyribonucleotides
Repetitive Sequences, Nucleic Acid

Chemicals

Histones
Nucleosomes
Oligodeoxyribonucleotides
DNA
Deoxyribonuclease I

Word Cloud

Created with Highcharts 10.0.0sequenceTGnucleosomeDNAvivounderwindingpseudodyadtandemrepeats3NNbpaccommodatenucleosomalallowcompetitivevitroreconstitutionexperimentssyntheticcomposedrepetitiveA/TG/Cspecifically20'TGsequence'5'-TCGGTGTTAGAGCCTGTAAC-3'reportedassociatehistoneoctameraffinityhighernucleosomallyderivedHoweverleasttwogroupsindependentlyshownstablypositionedsuggestedanisotropicflexibilitygoverned10periodicityincompatiblerequiredhelixmaintainingbendingpreferencecanaccommodatedremaindertesthypothesisdirectlystudyingstructuremodifiedsequencesdesignedshowmodificationssufficientstableincorporationrepeatnoteinvasiononeendheptamertranslationallyrandomrotationallyconstraineddiscusspossiblereasonsabsencenucleosomesModifiedcurvedlocalfailsposition

Similar Articles

Cited By