Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites.

G Karupiah, N Harris
Author Information
  1. G Karupiah: Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

IFN-gamma-induced nitric oxide (NO) in the murine macrophage-derived cell line RAW 264.7 was previously shown to inhibit replication of the poxviruses ectromelia and vaccinia (VV) and HSV-1. In the current study we demonstrate that murine macrophages activated as a consequence of VV infection express inducible nitric oxide synthase. These activated macrophages were resistant to infection with VV and efficiently blocked the replication of VV and HSV-1 in infected bystander cells of epithelial and fibroblast origin. This inhibition was arginine dependent, correlated with nitrite production in cultures, and reversible by the NOS inhibitor N omega-monomethyl-L-arginine. NO-mediated inhibition of VV replication was studied by treatment of virus-infected human 293 cells with the NO donor S-nitroso-N-acetyl-penicillamine. Using a VV-specific DNA probe, antibodies specific for temporally expressed viral proteins, and transmission electron microscopy, we have shown that NO inhibited viral late gene protein synthesis, DNA replication, and virus particle formation, but not expression of the early proteins that were analyzed. Putative enzymatic targets of NO were identified by reversing the NO-mediated inhibition of VV replication in the 293 cells with exogenous ferrous sulfate and L-cysteine. Reversal of inhibition may derive from the capacity of these reagents to protect or regenerate nonheme iron or thiol groups, respectively, which are essential for the catalytic activities of enzymes susceptible to inactivation by NO.

References

  1. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1223-7 [PMID: 2153975]
  2. J Clin Invest. 1990 Jan;85(1):264-73 [PMID: 2404026]
  3. Immunol Cell Biol. 1990 Oct;68 ( Pt 5):343-6 [PMID: 2083955]
  4. Curr Opin Immunol. 1991 Feb;3(1):65-70 [PMID: 1711326]
  5. Pharmacol Rev. 1991 Jun;43(2):109-42 [PMID: 1852778]
  6. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7773-7 [PMID: 1715579]
  7. Biochem Biophys Res Commun. 1991 Aug 30;179(1):442-8 [PMID: 1652957]
  8. J Exp Med. 1991 Oct 1;174(4):761-7 [PMID: 1717630]
  9. Science. 1992 Apr 10;256(5054):225-8 [PMID: 1373522]
  10. Biochem J. 1992 May 15;284 ( Pt 1):15-8 [PMID: 1599394]
  11. Cell. 1992 Sep 4;70(5):705-7 [PMID: 1381285]
  12. FASEB J. 1992 Sep;6(12):3051-64 [PMID: 1381691]
  13. Science. 1993 Mar 19;259(5102):1739-42 [PMID: 8456300]
  14. Science. 1993 Mar 19;259(5102):1742-5 [PMID: 8456301]
  15. J Virol. 1993 Jul;67(7):4214-26 [PMID: 7685412]
  16. J Clin Invest. 1993 Jun;91(6):2446-52 [PMID: 8390481]
  17. Virology. 1993 Aug;195(2):732-44 [PMID: 8337842]
  18. J Exp Med. 1993 Aug 1;178(2):605-13 [PMID: 7688028]
  19. Science. 1993 Sep 10;261(5127):1445-8 [PMID: 7690156]
  20. J Virol. 1994 Feb;68(2):1103-14 [PMID: 8289340]
  21. Virology. 1994 Feb;198(2):731-5 [PMID: 8291253]
  22. J Virol. 1994 Mar;68(3):1360-70 [PMID: 8107201]
  23. J Immunol. 1994 Apr 15;152(8):4110-8 [PMID: 7511667]
  24. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8137-41 [PMID: 8058769]
  25. J Exp Med. 1994 Sep 1;180(3):969-76 [PMID: 7520477]
  26. Cell. 1994 Sep 23;78(6):931-6 [PMID: 7923362]
  27. J Virol. 1995 Feb;69(2):910-5 [PMID: 7529336]
  28. J Immunol. 1990 Jan 1;144(1):290-8 [PMID: 2295796]
  29. Transplant Rev. 1974;19(0):56-88 [PMID: 4152201]
  30. J Clin Invest. 1980 Feb;65(2):357-70 [PMID: 7356685]
  31. J Cell Biol. 1982 Nov;95(2 Pt 1):527-35 [PMID: 6292238]
  32. Cancer Immunol Immunother. 1986;22(3):197-203 [PMID: 3731205]
  33. J Clin Invest. 1986 Sep;78(3):790-7 [PMID: 3745439]
  34. J Immunol. 1987 Jul 15;139(2):518-25 [PMID: 3110273]
  35. J Immunol. 1988 Oct 1;141(7):2407-12 [PMID: 3139757]
  36. J Exp Med. 1989 May 1;169(5):1543-55 [PMID: 2497225]
  37. Biochem Biophys Res Commun. 1990 Jan 15;166(1):119-25 [PMID: 2154196]

MeSH Term

Amino Acid Oxidoreductases
Amino Acid Sequence
Animals
Cell Line
Cells, Cultured
Chlorocebus aethiops
Citric Acid Cycle
Cysteine
DNA Replication
DNA, Viral
Epithelium
Female
Ferrous Compounds
Fibroblasts
Herpesvirus 1, Human
Humans
Kidney
Macrophages, Peritoneal
Mice
Mice, Inbred BALB C
Molecular Sequence Data
Nitric Oxide
Nitric Oxide Synthase
Penicillamine
Peptide Fragments
S-Nitroso-N-Acetylpenicillamine
Tricarboxylic Acids
Vaccinia virus
Vasodilator Agents
Virus Replication

Chemicals

DNA, Viral
Ferrous Compounds
Peptide Fragments
Tricarboxylic Acids
Vasodilator Agents
Nitric Oxide
ferrous sulfate
S-Nitroso-N-Acetylpenicillamine
Nitric Oxide Synthase
Amino Acid Oxidoreductases
Penicillamine
Cysteine

Word Cloud

Created with Highcharts 10.0.0replicationVVNOinhibitionnitricoxidecellsviralmurineshownHSV-1macrophagesactivatedinfectionNO-mediated293DNAproteinsferroussulfateIFN-gamma-inducedmacrophage-derivedcelllineRAW2647previouslyinhibitpoxvirusesectromeliavacciniacurrentstudydemonstrateconsequenceexpressinduciblesynthaseresistantefficientlyblockedinfectedbystanderepithelialfibroblastoriginargininedependentcorrelatednitriteproductionculturesreversibleNOSinhibitorNomega-monomethyl-L-argininestudiedtreatmentvirus-infectedhumandonorS-nitroso-N-acetyl-penicillamineUsingVV-specificprobeantibodiesspecifictemporallyexpressedtransmissionelectronmicroscopyinhibitedlategeneproteinsynthesisvirusparticleformationexpressionearlyanalyzedPutativeenzymatictargetsidentifiedreversingexogenousL-cysteineReversalmayderivecapacityreagentsprotectregeneratenonhemeironthiolgroupsrespectivelyessentialcatalyticactivitiesenzymessusceptibleinactivationInhibitionreversaltricarboxylicacidcyclemetabolites

Similar Articles

Cited By