- J Vanhala: Tampere University of Technology/Microelectronics Laboratory, Finland.
Methods based on the neural network techniques are among the most accurate in the secondary structure prediction of globular proteins. Here the same principles have been used for the tertiary structure prediction problem. The map of dihedral phi and psi angles is divided into 10 by 10 squares each spanning 36 by 36 degrees. By predicting the classification of each residue in the protein chain in this map a rough tertiary structure can be deduced. A complete prediction system running on a cluster of workstations and a graphical user interface was developed.