Changes in volume, surface estimate, three-dimensional shape and total number of neurons of the human primary visual cortex from midgestation until old age.

G Leuba, R Kraftsik
Author Information
  1. G Leuba: University Psychogeriatrics Hospital, Lausanne, Switzerland.

Abstract

Macroscopic features such as volume, surface estimate, thickness and caudorostral length of the human primary visual cortex (Brodman's area 17) of 46 human brains between midgestation and 93 years were studied by means of camera lucida drawings from serial frontal sections. Individual values were best fitted by a logistic function from midgestation to adulthood and by a regression line between adulthood and old age. Allometric functions were calculated to study developmental relationships between all the features. The three-dimensional shape of area 17 was also reconstructed from the serial sections in 15 cases and correlated with the sequence of morphological events. The sulcal pattern of area 17 begins to develop around 21 weeks of gestation but remains rather simple until birth, while it becomes more convoluted, particularly in the caudal part, during the postnatal period. Until birth, a large increase in cortical thickness (about 83% of its mean adult value) and caudorostral length (69%) produces a moderate increase in cortical volume (31%) and surface estimate (40%) of area 17. After birth, the cortical volume and surface undergo their maximum growth rate, in spite of a rather small increase in cortical thickness and caudorostral length. This is due to the development of the pattern of gyrification within and around the calcarine fissure. All macroscopic features have reached the mean adult value by the end of the first postnatal year. With aging, the only features to undergo significant regression are the cortical surface estimate and the caudorostral length. The total number of neurons in area 17 shows great interindividual variability at all ages. No decrease in the postnatal period or in aging could be demonstrated.

References

  1. J Neurocytol. 1992 Jan;21(1):34-49 [PMID: 1738005]
  2. Neurobiol Aging. 1987 Nov-Dec;8(6):521-45 [PMID: 3323927]
  3. J Neurosci. 1985 Apr;5(4):890-902 [PMID: 3981249]
  4. J Comp Neurol. 1985 Aug 1;238(1):92-100 [PMID: 4044906]
  5. J Neurol Sci. 1991 Jun;103(2):136-43 [PMID: 1880530]
  6. Br J Ophthalmol. 1918 Jul;2(7):353-84 [PMID: 18167806]
  7. J Comp Neurol. 1993 Jul 1;333(1):41-52 [PMID: 8340495]
  8. Brain Res. 1989 Apr 17;485(1):79-88 [PMID: 2720405]
  9. Eye (Lond). 1991;5 ( Pt 1):27-30 [PMID: 2060666]
  10. J Anat. 1939 Jul;73(Pt 4):563-574.3 [PMID: 17104779]
  11. J Neuropathol Exp Neurol. 1980 Jul;39(4):487-501 [PMID: 7217997]
  12. Hum Neurobiol. 1984;3(4):223-7 [PMID: 6526708]
  13. Philos Trans R Soc Lond B Biol Sci. 1975 Nov 20;272(919):487-536 [PMID: 2937]
  14. Vis Neurosci. 1993 Jan-Feb;10(1):41-58 [PMID: 8381019]
  15. Anat Embryol (Berl). 1988;179(2):173-9 [PMID: 3232854]
  16. Hum Neurobiol. 1987;6(1):11-8 [PMID: 3583841]
  17. J Comp Neurol. 1990 Aug 8;298(2):188-214 [PMID: 2212102]
  18. Neurosci Lett. 1982 Dec 13;33(3):247-52 [PMID: 7162689]
  19. J Neurosci Methods. 1983 Sep;9(1):75-85 [PMID: 6355668]
  20. J Hirnforsch. 1984;25(4):353-74 [PMID: 6481152]
  21. Acta Neuropathol. 1983;61(3-4):178-82 [PMID: 6650131]
  22. Vision Res. 1986;26(9):1483-506 [PMID: 3113071]
  23. J Comp Neurol. 1979 Jan 15;183(2):221-46 [PMID: 762256]
  24. J Comp Neurol. 1982 Sep 20;210(3):291-306 [PMID: 7142444]
  25. Brain Res. 1990 May 28;517(1-2):69-75 [PMID: 2376007]
  26. Hum Neurobiol. 1984;3(2):61-74 [PMID: 6378843]
  27. Brain Res Dev Brain Res. 1991 Jul 16;61(1):103-9 [PMID: 1717182]
  28. Brain. 2011 Mar;134(Pt 3):634-7 [PMID: 21469254]
  29. J Comp Neurol. 1988 Jun 15;272(3):424-36 [PMID: 3417894]
  30. Eye (Lond). 1992;6 ( Pt 2):129-35 [PMID: 1624034]
  31. J Neurosci Methods. 1986 Oct;18(1-2):19-37 [PMID: 3540468]
  32. J Comp Neurol. 1987 May 8;259(2):237-46 [PMID: 3584558]
  33. Anat Embryol (Berl). 1986;174(3):339-53 [PMID: 3766990]
  34. J Neurol Sci. 1979 Feb;40(2-3):169-88 [PMID: 372500]
  35. Exp Brain Res. 1989;77(1):31-8 [PMID: 2792267]
  36. J Neurosurg. 1974 Jun;40(6):747-55 [PMID: 4826600]
  37. J Gerontol. 1980 Nov;35(6):836-41 [PMID: 7440924]
  38. Vision Res. 1984;24(5):429-48 [PMID: 6740964]
  39. Hum Neurobiol. 1987;6(1):1-9 [PMID: 3583840]
  40. Philos Trans R Soc Lond B Biol Sci. 1984 Jan 17;304(1119):255-72 [PMID: 6142485]
  41. Brain Res. 1984 Mar;315(1):117-24 [PMID: 6722572]
  42. J Comp Neurol. 1993 Aug 8;334(2):169-75 [PMID: 8366193]
  43. Neurobiol Aging. 1994 Jan-Feb;15(1):29-43 [PMID: 8159261]
  44. Arch Ophthalmol. 1991 Jun;109(6):816-24 [PMID: 2043069]
  45. Exp Neurol. 1985 May;88(2):288-302 [PMID: 3987858]
  46. J Neurosci. 1993 Jul;13(7):2801-20 [PMID: 8331373]
  47. J Comp Neurol. 1990 Oct 1;300(1):5-25 [PMID: 2229487]
  48. Arch Ophthalmol. 1990 Jul;108(7):1025-31 [PMID: 2164380]

MeSH Term

Adolescent
Adult
Aged
Aged, 80 and over
Aging
Child
Child, Preschool
Female
Humans
Image Processing, Computer-Assisted
Infant
Infant, Newborn
Male
Mathematics
Middle Aged
Neurons
Visual Cortex

Word Cloud

Created with Highcharts 10.0.0surfacearea17corticalfeaturesvolumeestimatecaudorostrallengththicknesshumanmidgestationbirthpostnatalincreaseprimaryvisualcortexserialsectionsadulthoodregressionoldagethree-dimensionalshapepatternaroundratherperiodmeanadultvalueundergoagingtotalnumberneuronsMacroscopicBrodman's46brains93yearsstudiedmeanscameralucidadrawingsfrontalIndividualvaluesbestfittedlogisticfunctionlineAllometricfunctionscalculatedstudydevelopmentalrelationshipsalsoreconstructed15casescorrelatedsequencemorphologicaleventssulcalbeginsdevelop21weeksgestationremainssimplebecomesconvolutedparticularlycaudalpartlarge83%69%producesmoderate31%40%maximumgrowthratespitesmallduedevelopmentgyrificationwithincalcarinefissuremacroscopicreachedendfirstyearsignificantshowsgreatinterindividualvariabilityagesdecreasedemonstratedChanges

Similar Articles

Cited By