Connections of the basal telencephalic areas c and d in the turtle brain.

M Siemen, H Künzle
Author Information
  1. M Siemen: Institute of Anatomy, University of Munich, Germany.

Abstract

Tracer substances were injected into the basal telencephalic areas c and d of the turtle brain. These areas (Acd) have recently been shown to be connected reciprocally with the dorsal spino-medullary region, though the particular subregions involved in these projections remained unclear. We demonstrated that the efferent projections of area d terminate predominantly within or immediately adjacent to the trigeminal nuclear complex and in the high cervical spinal gray. The dendritic domain of the vagus-solitarius complex and the dorsal column nuclear complex might also receive some basal telencephalic efferents. The afferent projections to Acd, on the other hand, arise predominantly in the dorsal column nuclei as defined according to cytoarchitectural and hodological criteria. A few retrogradely labeled cells were found in the vagus-solitarius complex, the principal trigeminal nucleus and the high cervical spinal cord. Numerous labeled cells were found in the dorsolateral isthmo-rhombencephalic tegmentum, especially the n. visceralis secundarius, the n. vestibularis superior and parts of the lateral lemniscal complex. Aminergic cell populations projecting to Acd were the n. raphes inferior and superior, the locus coeruleus, the substantia nigra, pars compacta and the ventral tegmental area. Other meso-diencephalic cell groups were the griseum centrale (including the n. laminaris of the torus semicircularis), the n. interpeduncularis dorsalis, the nucleus of the fasciculus longitudinalis medialis, the nucleus and the nucleus interstitialis of flm, the n. interstitialis commissuralis posterior and then n. caudalis. Several hypothalamic regions, the reuniens complex and the perirotundal region of the thalamus also appeared to project heavily to Acd. Telencephalic areas retrogradely labeled after injection of tracer into Acd and its immediate surroundings were the rostral part of the lateral (olfactory) cortex, adjacent regions of the basal dorsal ventricular ridge and the n. centralis amygdalae, the n. tractus olfactorius lateralis as well as the areas g and h. The data suggest that areas c and d may correlate best with the 'extended' amygdala in mammals; further correlation with structures similar to the ventral striopallidum, however, cannot be excluded. Homostrategies are discussed with regard to the processing of higher-order somatovisceral information in turtles, birds and mammals.

References

  1. J Comp Neurol. 1992 Nov 22;325(4):527-47 [PMID: 1361496]
  2. Anat Embryol (Berl). 1988;177(5):465-75 [PMID: 3364750]
  3. Brain Behav Evol. 1993;41(6):326-45 [PMID: 8324620]
  4. J Morphol. 1977 May;152(2):229-46 [PMID: 864712]
  5. J Comp Neurol. 1992 Sep 22;323(4):495-518 [PMID: 1430319]
  6. Neuroscience. 1980;5(11):1903-16 [PMID: 6159559]
  7. J Comp Neurol. 1987 Apr 15;258(3):317-38 [PMID: 2884240]
  8. J Comp Neurol. 1980 Nov 1;194(1):267-89 [PMID: 7440798]
  9. J Comp Neurol. 1982 Dec 20;212(4):349-64 [PMID: 7161414]
  10. J Comp Neurol. 1981 Jul 20;200(1):95-129 [PMID: 7251947]
  11. J Comp Neurol. 1980 Feb 1;189(3):437-65 [PMID: 7372857]
  12. Neuroscience. 1985 Oct;16(2):275-96 [PMID: 4080159]
  13. J Comp Neurol. 1985 Apr 22;234(4):441-64 [PMID: 3988994]
  14. Anat Embryol (Berl). 1987;175(4):505-15 [PMID: 2437831]
  15. Brain Behav Evol. 1993;41(2):97-116 [PMID: 8439806]
  16. Brain Behav Evol. 1987;30(3-4):121-42 [PMID: 3664261]
  17. Brain Res. 1990 Aug 20;525(2):330-4 [PMID: 1701334]
  18. J Comp Neurol. 1991 Nov 8;313(2):295-325 [PMID: 1765584]
  19. J Comp Neurol. 1992 Mar 8;317(2):195-218 [PMID: 1573064]
  20. Brain Res. 1971 Aug 20;31(2):313-26 [PMID: 5569153]
  21. J Comp Neurol. 1991 Jun 22;308(4):614-29 [PMID: 1865018]
  22. J Comp Neurol. 1980 Aug 15;192(4):827-51 [PMID: 7419757]
  23. J Hirnforsch. 1985;26(2):127-52 [PMID: 2410486]
  24. J Comp Neurol. 1988 Dec 15;278(3):405-29 [PMID: 2464007]
  25. J Comp Neurol. 1992 Mar 1;317(1):57-78 [PMID: 1374087]
  26. Cell Tissue Res. 1986;245(3):539-46 [PMID: 2428501]
  27. Brain Res Bull. 1990 Dec;25(6):875-87 [PMID: 1981174]
  28. Brain Res. 1979 Dec 7;178(1):17-40 [PMID: 91413]
  29. Prog Neurobiol. 1991;36(5):363-89 [PMID: 1887068]
  30. J Comp Neurol. 1987 Nov 22;265(4):549-80 [PMID: 2448348]
  31. Brain Res. 1986 May 14;373(1-2):235-9 [PMID: 3719309]
  32. J Neurosci. 1991 Mar;11(3):852-68 [PMID: 1705972]
  33. J Comp Neurol. 1988 May 15;271(3):451-60 [PMID: 2454968]
  34. Neuroscience. 1987 May;21(2):487-517 [PMID: 2441315]
  35. J Comp Neurol. 1984 Jun 10;226(1):50-75 [PMID: 6203942]
  36. J Comp Neurol. 1987 Nov 22;265(4):521-9 [PMID: 2828438]
  37. J Comp Neurol. 1983 Jun 1;216(4):406-20 [PMID: 6308073]
  38. J Comp Neurol. 1985 Jul 1;237(1):77-84 [PMID: 2995458]
  39. Brain Res. 1989 Sep 4;496(1-2):89-97 [PMID: 2804655]
  40. Neurosci Lett. 1985 Feb 4;53(3):327-30 [PMID: 3982715]
  41. J Comp Neurol. 1993 Mar 8;329(2):201-29 [PMID: 8454730]
  42. Peptides. 1984;5 Suppl 1:91-100 [PMID: 6148740]
  43. Neuroscience. 1989;31(3):785-97 [PMID: 2594200]
  44. J Comp Neurol. 1980 May 15;191(2):167-92 [PMID: 7410590]
  45. Brain Res. 1976 May 21;108(1):25-36 [PMID: 1276890]
  46. J Comp Neurol. 1983 Sep 20;219(3):305-27 [PMID: 6194191]
  47. J Comp Neurol. 1985 Jan 15;231(3):396-420 [PMID: 3968245]
  48. J Comp Neurol. 1990 Nov 22;301(4):554-74 [PMID: 2177063]
  49. J Comp Neurol. 1991 Jul 22;309(4):445-85 [PMID: 1918444]
  50. J Comp Neurol. 1981 Mar 1;196(3):391-405 [PMID: 7217363]
  51. J Physiol. 1981 May;314:281-94 [PMID: 7310692]
  52. Brain Res. 1985 Mar 11;329(1-2):241-57 [PMID: 3978445]
  53. J Comp Neurol. 1984 Dec 20;230(4):465-96 [PMID: 6520247]
  54. Anat Embryol (Berl). 1983;166(2):229-45 [PMID: 6846858]
  55. Brain Behav Evol. 1990;35(2):65-84 [PMID: 2191754]
  56. Neuroscience. 1982 Mar;7(3):615-30 [PMID: 7070669]
  57. J Comp Neurol. 1980 Sep 15;193(2):565-89 [PMID: 7440783]
  58. J Comp Neurol. 1993 Mar 1;329(1):111-28 [PMID: 8454722]
  59. J Comp Neurol. 1987 Jun 1;260(1):140-56 [PMID: 3597832]
  60. J Comp Neurol. 1982 Aug 10;209(3):313-29 [PMID: 7130459]
  61. Neuroscience. 1989;30(3):717-32 [PMID: 2771046]
  62. J Neurosci. 1981 Nov;1(11):1279-88 [PMID: 6171631]
  63. J Hirnforsch. 1980;21(2):125-59 [PMID: 7400576]
  64. Neuroscience. 1983 May;9(1):61-85 [PMID: 6192356]
  65. J Comp Neurol. 1990 Jul 22;297(4):582-93 [PMID: 1696591]
  66. J Histochem Cytochem. 1978 Feb;26(2):106-17 [PMID: 24068]
  67. J Hirnforsch. 1977;18(3):229-40 [PMID: 303653]
  68. Brain Res. 1986 Nov 29;398(2):375-81 [PMID: 3801910]
  69. J Neurosci. 1990 Apr;10(4):1043-54 [PMID: 2158523]
  70. Brain Res. 1984 Aug;319(3):229-59 [PMID: 6478256]
  71. Prog Brain Res. 1991;87:307-421 [PMID: 1678191]
  72. Yokohama Med Bull. 1971 Apr;22(1):1-29 [PMID: 5140148]
  73. J Comp Neurol. 1989 Jul 15;285(3):289-303 [PMID: 2760266]
  74. Brain Behav Evol. 1990;36(4):216-26 [PMID: 2279235]
  75. J Comp Neurol. 1990 Jul 1;297(1):132-44 [PMID: 2165505]
  76. J Comp Neurol. 1979 Jul 1;186(1):43-64 [PMID: 457930]
  77. Brain Behav Evol. 1985;27(1):11-27 [PMID: 3836730]
  78. Brain Res. 1979 Oct 19;175(2):191-217 [PMID: 314832]
  79. J Hirnforsch. 1994;35(1):79-102 [PMID: 7517417]
  80. J Comp Neurol. 1992 Jul 22;321(4):515-43 [PMID: 1380518]
  81. Brain Res Bull. 1989 Apr;22(4):705-15 [PMID: 2736396]
  82. J Comp Neurol. 1991 Nov 8;313(2):227-39 [PMID: 1765582]
  83. J Comp Neurol. 1974 Aug 1;156(3):277-306 [PMID: 4418301]
  84. J Comp Neurol. 1990 Mar 22;293(4):540-80 [PMID: 1691748]
  85. J Comp Neurol. 1985 Dec 1;242(1):122-33 [PMID: 2416784]
  86. Neuroscience. 1991;44(1):15-33 [PMID: 1722890]
  87. Brain Res. 1987 Apr 7;408(1-2):334-8 [PMID: 2439170]
  88. J Comp Neurol. 1990 Feb 15;292(3):457-79 [PMID: 1692852]
  89. J Comp Neurol. 1987 May 1;259(1):65-91 [PMID: 3294930]
  90. J Comp Neurol. 1988 Sep 22;275(4):469-92 [PMID: 2461392]
  91. J Comp Neurol. 1986 Mar 8;245(2):176-97 [PMID: 2420841]
  92. Brain Res. 1986 Jun 18;376(1):57-70 [PMID: 3013377]
  93. Anat Embryol (Berl). 1983;168(1):1-19 [PMID: 6359957]
  94. Brain Res. 1984 Dec 3;323(1):103-8 [PMID: 6395936]
  95. Neuroscience. 1983 Jun;9(2):297-307 [PMID: 6192360]
  96. J Comp Neurol. 1987 Mar 15;257(3):453-76 [PMID: 3558899]
  97. Brain Res. 1984 May 21;300(1):146-51 [PMID: 6733461]
  98. J Comp Neurol. 1988 Oct 1;276(1):61-80 [PMID: 3192764]
  99. Brain Behav Evol. 1990;36(1):39-58 [PMID: 2257479]
  100. Neuroscience. 1983 Nov;10(3):725-65 [PMID: 6646427]
  101. Exp Brain Res. 1985;58(2):379-91 [PMID: 3996501]

MeSH Term

Animals
Brain
Diencephalon
Rhombencephalon
Telencephalon
Turtles

Word Cloud

Created with Highcharts 10.0.0nareascomplexAcdbasalddorsalnucleustelencephaliccprojectionslabeledturtlebrainregionareapredominantlyadjacenttrigeminalnuclearhighcervicalspinalvagus-solitariuscolumnalsoretrogradelycellsfoundsuperiorlateralcellventralinterstitialisregionsmammalsTracersubstancesinjectedrecentlyshownconnectedreciprocallyspino-medullarythoughparticularsubregionsinvolvedremaineduncleardemonstratedefferentterminatewithinimmediatelygraydendriticdomainmightreceiveefferentsafferenthandarisenucleidefinedaccordingcytoarchitecturalhodologicalcriteriaprincipalcordNumerousdorsolateralisthmo-rhombencephalictegmentumespeciallyvisceralissecundariusvestibularispartslemniscalAminergicpopulationsprojectingraphesinferiorlocuscoeruleussubstantianigraparscompactategmentalmeso-diencephalicgroupsgriseumcentraleincludinglaminaristorussemicircularisinterpeduncularisdorsalisfasciculuslongitudinalismedialisflmcommissuralisposteriorcaudalisSeveralhypothalamicreuniensperirotundalthalamusappearedprojectheavilyTelencephalicinjectiontracerimmediatesurroundingsrostralpartolfactorycortexventricularridgecentralisamygdalaetractusolfactoriuslateraliswellghdatasuggestmaycorrelatebest'extended'amygdalacorrelationstructuressimilarstriopallidumhoweverexcludedHomostrategiesdiscussedregardprocessinghigher-ordersomatovisceralinformationturtlesbirdsConnections

Similar Articles

Cited By