Effects of glucose ingestion or glucose infusion on fuel substrate kinetics during prolonged exercise.

J A Hawley, A N Bosch, S M Weltan, S C Dennis, T D Noakes
Author Information
  1. J A Hawley: Department of Physiology, University of Cape Town Medical School, South Africa.

Abstract

To determine if bypassing both intestinal absorption and hepatic glucose uptake by intravenous glucose infusion might increase the rate of muscle glucose oxidation above 1 g.min-1, ten endurance-trained subjects were studied during 125 min of cycling at 70% of peak oxygen uptake (VO2peak). During exercise the subjects ingested either a 15 g.100 ml-1 U-14C labelled glucose solution or H2O labelled with a U-14C glucose tracer for the determination of the rates of plasma glucose oxidation (Rox) and exogenous carbohydrate (CHO) oxidation from plasma 14C glucose and 14CO2 specific activities, and respiratory gas exchange. Simultaneously, 2-3H glucose was infused at a constant rate to measure glucose turnover, while unlabelled glucose (25% dextrose) was infused into those subjects not ingesting glucose to maintain plasma glucose concentration at 5 mmol.l-1. Despite similar plasma glucose concentrations [ingestion 5.3 (SEM 0.13) mmol.l-1; infusion 5.0 (0.09) mmol.l-1], compared to glucose infusion, CHO ingestion significantly increased plasma insulin concentrations [12.9 (1.0) vs 4.8 (0.5) mU.l-1; P < 0.05], raised total Rox values [9.5 (1.2) vs 6.2 (0.7) mmol.125 min-1 kg fat free mass-1 (FFM); P < 0.05] and rates of CHO oxidation [37.2 (2.8) vs 24.1 (3.9) mmol.125 min-1 kg FFM-1; P < 0.05]. An increased reliance on CHO metabolism with CHO ingestion was associated with a decrease in fat oxidation. Whereas the contribution from fat oxidation to energy production increased to 51 (10)% with glucose infusion, it only reached 18 (4)% with glucose ingestion (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

References

  1. Sports Med. 1988 May;5(5):269-302 [PMID: 3291051]
  2. J Appl Physiol (1985). 1991 Feb;70(2):834-40 [PMID: 2022575]
  3. Diabetes. 1988 Aug;37(8):1025-34 [PMID: 3292323]
  4. Metabolism. 1985 May;34(5):431-6 [PMID: 3887101]
  5. J Clin Invest. 1983 Nov;72(5):1737-47 [PMID: 6138367]
  6. J Clin Invest. 1986 Mar;77(3):900-7 [PMID: 2869053]
  7. Am J Physiol. 1978 Jan;234(1):E84-93 [PMID: 623255]
  8. Am J Physiol. 1986 Jul;251(1 Pt 1):E65-70 [PMID: 3728665]
  9. Fed Proc. 1986 Dec;45(13):2924-9 [PMID: 3536591]
  10. Sports Med. 1991 Feb;11(2):102-24 [PMID: 2017604]
  11. Med Sci Sports Exerc. 1992 Jun;24(6):679-87 [PMID: 1602940]
  12. Eur J Clin Invest. 1974 Aug;4(4):247-52 [PMID: 4418024]
  13. Eur J Appl Physiol Occup Physiol. 1992;64(6):523-7 [PMID: 1618190]
  14. Eur J Appl Physiol Occup Physiol. 1992;65(1):79-83 [PMID: 1505544]
  15. Int J Sports Med. 1989 Oct;10(5):311-6 [PMID: 2689365]
  16. Exerc Sport Sci Rev. 1991;19:1-40 [PMID: 1936083]
  17. J Appl Physiol. 1973 Jun;34(6):764-9 [PMID: 4711585]
  18. J Appl Physiol (1985). 1990 Mar;68(3):990-6 [PMID: 2111314]
  19. Clin Sci Mol Med. 1978 Feb;54(2):133-40 [PMID: 620502]
  20. J Appl Physiol (1985). 1987 Dec;63(6):2388-95 [PMID: 3325488]
  21. Ann N Y Acad Sci. 1959 Sep 25;82:420-30 [PMID: 13833973]
  22. Diabetes. 1982 Jan;31(1):27-35 [PMID: 7152123]
  23. Exerc Sport Sci Rev. 1993;21:1-31 [PMID: 8504839]
  24. Int J Sport Nutr. 1991 Sep;1(3):279-88 [PMID: 1845002]
  25. Br J Nutr. 1974 Jul;32(1):77-97 [PMID: 4843734]
  26. Sports Med. 1992 Jul;14(1):27-42 [PMID: 1641541]
  27. J Appl Physiol (1985). 1993 Apr;74(4):1921-7 [PMID: 8514712]
  28. J Appl Physiol (1985). 1989 Jul;67(1):116-22 [PMID: 2759935]
  29. J Appl Physiol Respir Environ Exerc Physiol. 1977 Oct;43(4):695-9 [PMID: 908685]
  30. J Appl Physiol (1985). 1991 Jan;70(1):194-201 [PMID: 2010376]
  31. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5173-7 [PMID: 283423]
  32. Am J Physiol. 1979 Sep;237(3):E214-23 [PMID: 382871]
  33. Metabolism. 1988 Apr;37(4):323-9 [PMID: 3128719]
  34. J Clin Invest. 1982 Jan;69(1):45-54 [PMID: 7054242]
  35. Pflugers Arch. 1994 Mar;426(5):378-86 [PMID: 8015888]
  36. Am J Physiol. 1987 May;252(5 Pt 1):E606-15 [PMID: 3555113]
  37. Biochem J. 1977 Nov 15;168(2):161-70 [PMID: 597267]
  38. J Appl Physiol (1985). 1986 Jul;61(1):165-72 [PMID: 3525502]
  39. Biochem J. 1976 Jun 15;156(3):647-55 [PMID: 949346]
  40. Biochemistry. 1967 Jan;6(1):1-5 [PMID: 6030319]
  41. Ann N Y Acad Sci. 1977;301:45-55 [PMID: 270932]
  42. Biochem J. 1978 Jun 15;172(3):407-16 [PMID: 687352]
  43. J Appl Physiol. 1976 Nov;41(5 Pt. 1):683-8 [PMID: 993155]
  44. Diabetes. 1987 Aug;36(8):914-24 [PMID: 3297886]
  45. J Appl Physiol (1985). 1986 Mar;60(3):893-900 [PMID: 3514572]

MeSH Term

Administration, Oral
Adult
Blood Gas Analysis
Blood Glucose
Carbohydrate Metabolism
Exercise Test
Fats
Glucose
Glucose Oxidase
Humans
Infusions, Intravenous
Insulin
Oxidation-Reduction
Oxygen Consumption
Physical Exertion

Chemicals

Blood Glucose
Fats
Insulin
Glucose Oxidase
Glucose

Word Cloud

Created with Highcharts 10.0.0glucose0oxidationinfusionplasmaCHO5mmol1ingestionP<2min-1subjects125l-1increasedvs05]fatuptakerategexerciseU-14ClabelledratesRoxinfusedconcentrations3948kg%determinebypassingintestinalabsorptionhepaticintravenousmightincreasemuscletenendurance-trainedstudiedmincycling70%peakoxygenVO2peakingestedeither15100ml-1solutionH2Otracerdeterminationexogenouscarbohydrate14C14CO2specificactivitiesrespiratorygasexchangeSimultaneously2-3Hconstantmeasureturnoverunlabelled25%dextroseingestingmaintainconcentrationDespitesimilar[ingestionSEM1309l-1]comparedsignificantlyinsulin[12mUraisedtotalvalues[967freemass-1FFM[3724FFM-1reliancemetabolismassociateddecreaseWhereascontributionenergyproduction5110reached1805ABSTRACTTRUNCATEDAT250WORDSEffectsfuelsubstratekineticsprolonged

Similar Articles

Cited By