Modeling alpha-helical transmembrane domains: the calculation and use of substitution tables for lipid-facing residues.

D Donnelly, J P Overington, S V Ruffle, J H Nugent, T L Blundell
Author Information
  1. D Donnelly: Department of Crystallography, Birkbeck College, London, United Kingdom.

Abstract

Amino acid substitution tables are calculated for residues in membrane proteins where the side chain is accessible to the lipid. The analysis is based upon the knowledge of the three-dimensional structures of two homologous bacterial photosynthetic reaction centers and alignments of their sequences with the sequences of related proteins. The patterns of residue substitutions show that the lipid-accessible residues are less conserved and have distinctly different substitution patterns from the inaccessible residues in water-soluble proteins. The observed substitutions obtained from sequence alignments of transmembrane regions (identified from, e.g., hydrophobicity analysis) can be compared with the patterns derived from the substitution tables to predict the accessibility of residues to the lipid. A Fourier transform method, similar to that used for the calculation of a hydrophobic moment, is used to detect periodicity in the predicted accessibility that is compatible with the presence of an alpha-helix. If the putative transmembrane region is identified as helical, then the buried and exposed faces can be discriminated. The presence of charged residues on the lipid-exposed face can help to identify the regions that are in contact with the polar environment on the borders of the bilayer, and the construction of a meaningful three-dimensional model is then possible. This method is tested on an alignment of bacteriorhodopsin and two related sequences for which there are structural data at near atomic resolution.

References

  1. Harvey Lect. 1966-1967;62:231-56 [PMID: 4969962]
  2. FEBS Lett. 1991 Mar 25;280(2):379-82 [PMID: 1707373]
  3. J Mol Biol. 1977 May 25;112(3):535-42 [PMID: 875032]
  4. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2023-7 [PMID: 6929535]
  5. Proc Natl Acad Sci U S A. 1984 Jan;81(1):140-4 [PMID: 6582470]
  6. EMBO J. 1986 Apr;5(4):823-6 [PMID: 3709526]
  7. Annu Rev Biophys Biophys Chem. 1986;15:321-53 [PMID: 3521657]
  8. FEBS Lett. 1986 Sep 1;205(1):82-6 [PMID: 3527749]
  9. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5730-4 [PMID: 3303032]
  10. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6162-6 [PMID: 2819866]
  11. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6438-42 [PMID: 3306679]
  12. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8487-91 [PMID: 3054889]
  13. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9012-6 [PMID: 3057498]
  14. Protein Eng. 1987 Jun;1(3):159-71 [PMID: 3507702]
  15. FEBS Lett. 1989 Jul 17;251(1-2):109-16 [PMID: 2546817]
  16. Science. 1989 Aug 4;245(4917):510-3 [PMID: 2667138]
  17. Annu Rev Biochem. 1989;58:607-33 [PMID: 2673018]
  18. Annu Rev Biochem. 1989;58:999-1027 [PMID: 2673027]
  19. Science. 1990 Mar 16;247(4948):1306-10 [PMID: 2315699]
  20. J Mol Biol. 1990 Mar 20;212(2):403-28 [PMID: 2181150]
  21. Annu Rev Biophys Biophys Chem. 1990;19:127-57 [PMID: 1694667]
  22. Nature. 1991 Mar 14;350(6314):130-4 [PMID: 2005962]
  23. J Mol Biol. 1971 Feb 14;55(3):379-400 [PMID: 5551392]

MeSH Term

Amino Acid Sequence
Bacteriorhodopsins
Fourier Analysis
Membrane Lipids
Membrane Proteins
Models, Molecular
Molecular Sequence Data
Protein Structure, Secondary

Chemicals

Membrane Lipids
Membrane Proteins
Bacteriorhodopsins

Word Cloud

Created with Highcharts 10.0.0residuessubstitutiontablesproteinssequencespatternstransmembranecanlipidanalysisthree-dimensionaltwoalignmentsrelatedsubstitutionsregionsidentifiedaccessibilitymethodusedcalculationpresenceAminoacidcalculatedmembranesidechainaccessiblebaseduponknowledgestructureshomologousbacterialphotosyntheticreactioncentersresidueshowlipid-accessiblelessconserveddistinctlydifferentinaccessiblewater-solubleobservedobtainedsequenceeghydrophobicitycomparedderivedpredictFouriertransformsimilarhydrophobicmomentdetectperiodicitypredictedcompatiblealpha-helixputativeregionhelicalburiedexposedfacesdiscriminatedchargedlipid-exposedfacehelpidentifycontactpolarenvironmentbordersbilayerconstructionmeaningfulmodelpossibletestedalignmentbacteriorhodopsinstructuraldatanearatomicresolutionModelingalpha-helicaldomains:uselipid-facing

Similar Articles

Cited By