The structure of spatial receptive fields of neurons in primary auditory cortex of the cat.

J F Brugge, R A Reale, J E Hind
Author Information
  1. J F Brugge: Department of Neurophysiology, University of Wisconsin, Madison 53706, USA.

Abstract

Transient broad-band stimuli that mimic in their spectrum and time waveform sounds arriving from a speaker in free space were delivered to the tympanic membranes of barbiturized cats via sealed and calibrated earphones. The full array of such signals constitutes a virtual acoustic space (VAS). The extra-cellular response to a single stimulus at each VAS direction, consisting of one or a few precisely time-locked spikes, was recorded from neurons in primary auditory cortex. Effective sound directions form a virtual space receptive field (VSRF). Near threshold, most VSRFs were confined to one quadrant of acoustic space and were located on or near the acoustic axis. Generally, VSRFs expanded monotonically with increases in stimulus intensity, with some occupying essentially all of the acoustic space. The VSRF was not homogeneous with respect to spike timing or firing strength. Typically, onset latency varied by as much as 4-5 msec across the VSRF. A substantial proportion of recorded cells exhibited a gradient of first-spike latency within the VSRF. Shortest latencies occupied a core of the VSRF, on or near the acoustic axis, with longer latency being represented progressively at directions more distant from the core. Remaining cells had VSRFs that exhibited no such gradient. The distribution of firing probability was mapped in those experiments in which multiple trials were carried out at each direction. For some cells there was a positive correlation between latency and firing probability.

References

  1. Exp Brain Res. 1971;113(3):256-72 [PMID: 5098306]
  2. Vis Neurosci. 1991 May;6(5):421-8 [PMID: 2069896]
  3. Hear Res. 1981 Jul;4(3-4):299-307 [PMID: 7263517]
  4. J Acoust Soc Am. 1989 Feb;85(2):868-78 [PMID: 2926001]
  5. J Neurophysiol. 1990 Sep;64(3):872-87 [PMID: 2230931]
  6. J Neurophysiol. 1969 Nov;32(6):1005-24 [PMID: 5347704]
  7. J Acoust Soc Am. 1993 Mar;93(3):1496-501 [PMID: 8473602]
  8. Science. 1993 Dec 17;262(5141):1901-4 [PMID: 8266083]
  9. J Neurophysiol. 1994 Jun;71(6):2194-216 [PMID: 7931511]
  10. Exp Brain Res. 1971;113(3):239-55 [PMID: 5098305]
  11. J Neurophysiol. 1981 Aug;46(2):260-76 [PMID: 6267213]
  12. J Acoust Soc Am. 1990 Sep;88(3):1403-11 [PMID: 2229675]
  13. J Neurosci. 1998 Mar 15;18(6):2147-60 [PMID: 9482800]
  14. J Neurophysiol. 1993 Aug;70(2):667-76 [PMID: 8410166]
  15. Hear Res. 1983 May;10(2):203-15 [PMID: 6863155]
  16. Biol Cybern. 1988;59(1):41-8 [PMID: 3401517]
  17. Science. 1977 Dec 23;198(4323):1278-80 [PMID: 929202]
  18. J Exp Psychol Hum Percept Perform. 1993 Feb;19(1):203-16 [PMID: 8440986]
  19. J Neurophysiol. 1990 Jun;63(6):1448-66 [PMID: 2358885]
  20. J Acoust Soc Am. 1990 Feb;87(2):757-81 [PMID: 2307774]
  21. Brain Res. 1974 Jul 26;75(2):203-14 [PMID: 4841916]
  22. J Neurophysiol. 1990 Oct;64(4):1247-60 [PMID: 2258745]
  23. Hear Res. 1992 Mar;58(2):132-52 [PMID: 1568936]
  24. J Acoust Soc Am. 1995 Jan;97(1):439-52 [PMID: 7860825]
  25. J Neurosci. 1981 Jan;1(1):107-20 [PMID: 7346555]
  26. J Neurophysiol. 1991 Aug;66(2):505-29 [PMID: 1774584]
  27. Annu Rev Neurosci. 1987;10:363-401 [PMID: 3105414]
  28. Ann N Y Acad Sci. 1993 Jun 14;682:104-18 [PMID: 8323107]
  29. Hear Res. 1994 Feb;73(1):67-84 [PMID: 8157508]
  30. Hear Res. 1984 Feb;13(2):175-88 [PMID: 6715264]
  31. J Comp Neurol. 1980 Jul 15;192(2):265-91 [PMID: 7400399]
  32. Science. 1978 May 19;200(4343):795-7 [PMID: 644324]
  33. Brain Res. 1977 Sep 9;133(1):1-28 [PMID: 902079]
  34. Exp Brain Res. 1971;113(3):273-93 [PMID: 5098307]
  35. J Neurophysiol. 1975 Mar;38(2):231-49 [PMID: 1092814]
  36. Science. 1994 May 6;264(5160):842-4 [PMID: 8171339]
  37. Brain Res. 1981 Aug 31;219(2):249-67 [PMID: 7260632]
  38. Exp Brain Res. 1974;21(4):387-98 [PMID: 4442495]
  39. J Neurophysiol. 1990 Sep;64(3):888-902 [PMID: 2230932]
  40. J Acoust Soc Am. 1989 Feb;85(2):858-67 [PMID: 2926000]
  41. Hear Res. 1984 Feb;13(2):159-74 [PMID: 6715263]
  42. Brain Res. 1974 Jun 28;73(3):455-71 [PMID: 4835367]
  43. Hear Res. 1994 Nov;80(2):153-66 [PMID: 7896574]
  44. J Neurophysiol. 1993 Jul;70(1):351-69 [PMID: 8360719]
  45. Am J Otol. 1995 May;16(3):338-52 [PMID: 8588629]
  46. Vis Neurosci. 1991 Dec;7(6):531-46 [PMID: 1772804]

Grants

  1. P30 HD003352/NICHD NIH HHS
  2. HD03352/NICHD NIH HHS
  3. F32 DC000398/NIDCD NIH HHS
  4. DC00398/NIDCD NIH HHS
  5. P01 DC000116/NIDCD NIH HHS
  6. DC00116/NIDCD NIH HHS

MeSH Term

Acoustic Stimulation
Animals
Auditory Cortex
Cats
Functional Laterality
Neurons
Reaction Time
Space Perception

Word Cloud

Created with Highcharts 10.0.0spaceacousticVSRFlatencyVSRFsfiringcellsvirtualVASstimulusdirectiononerecordedneuronsprimaryauditorycortexdirectionsreceptivenearaxisexhibitedgradientcoreprobabilityTransientbroad-bandstimulimimicspectrumtimewaveformsoundsarrivingspeakerfreedeliveredtympanicmembranesbarbiturizedcatsviasealedcalibratedearphonesfullarraysignalsconstitutesextra-cellularresponsesingleconsistingpreciselytime-lockedspikesEffectivesoundformfieldNearthresholdconfinedquadrantlocatedGenerallyexpandedmonotonicallyincreasesintensityoccupyingessentiallyhomogeneousrespectspiketimingstrengthTypicallyonsetvariedmuch4-5msecacrosssubstantialproportionfirst-spikewithinShortestlatenciesoccupiedlongerrepresentedprogressivelydistantRemainingdistributionmappedexperimentsmultipletrialscarriedpositivecorrelationstructurespatialfieldscat

Similar Articles

Cited By