Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling.

E Daro, P van der Sluijs, T Galli, I Mellman
Author Information
  1. E Daro: Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8002, USA.

Abstract

During receptor mediated endocytosis, at least a fraction of recycling cargo typically accumulates in a pericentriolar cluster of tubules and vesicles. However, it is not clear if these endosomal structures are biochemically distinct from the early endosomes from which they are derived. To better characterize this pericentriolar endosome population, we determined the distribution of two endogenous proteins known to be functionally involved in receptor recycling [Rab4, cellubrevin (Cbvn)] relative to the distribution of a recycling ligand [transferrin (Tfn)] as it traversed the endocytic pathway. Shortly after internalization, Tfn entered a population of early endosomes that contained both Rab4 and Cbvn, demonstrated by triple label immunofluorescence confocal microscopy. Tfn then accumulated in the pericentriolar cluster of recycling vesicles (RVs). However, although these pericentriolar endosomes contained Cbvn, they were strikingly depleted of Rab4. The ability of internalized Tfn to reach the Rab4-negative population was not blocked by nocodazole, although the characteristic pericentriolar location of the population was not maintained in the absence of microtubules. Similarly, Rab4-positive and -negative populations remained distinct in cells treated with brefeldin A, with only Rab4-positive elements exhibiting the extended tubular morphology induced by the drug. Thus, at least with respect to Rab4 distribution, the pathway of Tfn receptor recycling consists of at least two biochemically and functionally distinct populations of endosomes, a Rab4-positive population of early endosomes to which incoming Tfn is initially delivered and a Rab4-negative population of recycling vesicles that transiently accumulates Tfn on its route back to the plasma membrane.

References

  1. J Cell Biol. 1995 Feb;128(4):549-61 [PMID: 7860630]
  2. Annu Rev Cell Biol. 1993;9:129-61 [PMID: 8280459]
  3. J Cell Physiol. 1993 Jun;155(3):579-94 [PMID: 8491793]
  4. Nature. 1993 Mar 25;362(6418):318-24 [PMID: 8455717]
  5. J Biol Chem. 1993 Aug 25;268(24):18390-7 [PMID: 8349714]
  6. Cell. 1991 Mar 8;64(5):915-25 [PMID: 1900457]
  7. Cell. 1990 Jul 27;62(2):317-29 [PMID: 2115402]
  8. J Cell Biol. 1987 Jul;105(1):207-14 [PMID: 3611186]
  9. Cell. 1992 Sep 4;70(5):715-28 [PMID: 1516130]
  10. Mol Cell Biol. 1985 Dec;5(12):3610-6 [PMID: 3915782]
  11. EMBO J. 1990 Nov;9(11):3515-25 [PMID: 2170116]
  12. J Cell Biol. 1995 Aug;130(3):537-51 [PMID: 7622556]
  13. J Cell Biol. 1994 Jun;125(5):1015-24 [PMID: 8195285]
  14. J Cell Biol. 1985 Mar;100(3):826-34 [PMID: 2982885]
  15. J Cell Biol. 1994 Apr;125(1):67-86 [PMID: 8138576]
  16. Nature. 1990 Jul 26;346(6282):335-9 [PMID: 2374607]
  17. Nature. 1993 Jul 22;364(6435):346-9 [PMID: 8332193]
  18. EMBO J. 1993 Feb;12(2):677-82 [PMID: 8440258]
  19. Cell. 1991 Nov 1;67(3):591-600 [PMID: 1657400]
  20. Annu Rev Biochem. 1994;63:63-100 [PMID: 7979250]
  21. J Cell Biol. 1994 Jan;124(1-2):83-100 [PMID: 7905002]
  22. Cell. 1991 Nov 1;67(3):617-27 [PMID: 1934063]
  23. Cell. 1992 Sep 4;70(5):729-40 [PMID: 1516131]
  24. J Cell Biol. 1995 Jun;129(6):1509-22 [PMID: 7790351]
  25. J Biol Chem. 1993 Sep 5;268(25):18423-6 [PMID: 8360142]
  26. Cell. 1984 Jul;37(3):789-800 [PMID: 6204769]
  27. J Biochem. 1991 Apr;109(4):528-33 [PMID: 1869507]
  28. J Cell Biol. 1987 Jun;104(6):1715-23 [PMID: 3034919]
  29. J Cell Biol. 1991 Nov;115(3):635-53 [PMID: 1918157]
  30. Trends Cell Biol. 1994 Apr;4(4):120-6 [PMID: 14731734]
  31. Cell. 1991 Nov 1;67(3):601-16 [PMID: 1682055]
  32. Curr Opin Cell Biol. 1993 Aug;5(4):613-20 [PMID: 8257602]
  33. J Cell Biol. 1983 Aug;97(2):508-21 [PMID: 6309862]
  34. J Cell Biol. 1983 Jan;96(1):1-27 [PMID: 6298247]

MeSH Term

Animals
Brefeldin A
Cell Compartmentation
Cell Line
Cell Membrane
Cricetinae
Cricetulus
Cyclopentanes
Endosomes
Fluorescein-5-isothiocyanate
Fluorescent Antibody Technique, Direct
GTP-Binding Proteins
Humans
Kinetics
Membrane Proteins
Microscopy, Confocal
Nocodazole
Receptors, Transferrin
Vesicle-Associated Membrane Protein 3
rab4 GTP-Binding Proteins

Chemicals

Cyclopentanes
Membrane Proteins
Receptors, Transferrin
Vesicle-Associated Membrane Protein 3
Brefeldin A
GTP-Binding Proteins
rab4 GTP-Binding Proteins
Fluorescein-5-isothiocyanate
Nocodazole

Word Cloud

Created with Highcharts 10.0.0recyclingTfnpopulationpericentriolarendosomesreceptorearlyRab4leastvesiclesdistinctdistributionCbvnpathwayRab4-positivepopulationsaccumulatesclusterHoweverbiochemicallyendosometwofunctionallycellubrevin]containedalthoughRab4-negativemediatedendocytosisfractioncargotypicallytubulesclearendosomalstructuresderivedbettercharacterizedeterminedendogenousproteinsknowninvolved[Rab4relativeligand[transferrintraversedendocyticShortlyinternalizationentereddemonstratedtriplelabelimmunofluorescenceconfocalmicroscopyaccumulatedRVsstrikinglydepletedabilityinternalizedreachblockednocodazolecharacteristiclocationmaintainedabsencemicrotubulesSimilarly-negativeremainedcellstreatedbrefeldinelementsexhibitingextendedtubularmorphologyinduceddrugThusrespectconsistsincominginitiallydeliveredtransientlyroutebackplasmamembranedefinedifferenttransferrin

Similar Articles

Cited By