MR signal intensity of the perirolandic cortex in the neonate and infant.

Y Korogi, M Takahashi, M Sumi, T Hirai, Y Sakamoto, I Ikushima, H Miyayama
Author Information
  1. Y Korogi: Department of Radiology, Kumamoto University School of Medicine, Japan.

Abstract

Our purpose was the study the magnetic resonance (MR) signal intensity of the perirolandic gyri perinatally and to correlate it with the histological findings in formalin-fixed brains, focusing on myelination. MRI of 20 neurologically normal neonates and infants, of 37-64 weeks postconception (PCA), were studied retrospectively. We reviewed four formalin-fixed brains of infants 37-46 weeks PCA microscopically. The posterior cortex of the precentral gyrus (P-PRE) and the anterior cortex of the postcentral gyrus (A-PST) had different signal intensity from the adjacent surrounding cortex. On T1-weighted images P-PRE and A-PST gave higher signal 41-44 weeks PCA; on T2-weighted images, they gave lower signal 37-51 weeks PCA. Histological examination revealed very little myelination of the nerve fibres within both the P-PRE and the A-PST, while considerable myelination was present in the internal capsule and central corona radiata. The changes in signal intensity in the perirolandic gyri may reflect not only the degree of myelination but also the more advanced development of the nerve cells, associated with rapid proliferation and formation of oligodendroglial cells, synapses and dendrites. They could be another important landmark for brain maturation.

References

  1. AJNR Am J Neuroradiol. 1986 Mar-Apr;7(2):201-8 [PMID: 3082150]
  2. Eur J Radiol. 1991 May-Jun;12(3):208-15 [PMID: 1855514]
  3. Clin Radiol. 1986 Mar;37(2):113-7 [PMID: 3698491]
  4. J Neuropathol Exp Neurol. 1988 May;47(3):217-34 [PMID: 3367155]
  5. J Neuropathol Exp Neurol. 1980 Jul;39(4):487-501 [PMID: 7217997]
  6. Radiology. 1989 Aug;172(2):381-5 [PMID: 2748819]
  7. Neurosci Lett. 1982 Dec 13;33(3):247-52 [PMID: 7162689]
  8. Radiology. 1987 Jan;162(1 Pt 1):223-9 [PMID: 3786767]
  9. AJR Am J Roentgenol. 1983 Nov;141(5):1005-18 [PMID: 6605040]
  10. Pediatr Radiol. 1988;18(3):183-9 [PMID: 3368242]
  11. J Neuropathol Exp Neurol. 1987 May;46(3):283-301 [PMID: 3559630]
  12. Arch Dis Child. 1973 Oct;48(10):757-67 [PMID: 4796010]
  13. Brain. 1975 Mar;98(1):49-64 [PMID: 1122375]
  14. Magn Reson Imaging. 1986;4(1):1-9 [PMID: 3951335]
  15. Radiology. 1987 Jan;162(1 Pt 1):272-3 [PMID: 3786777]
  16. Radiology. 1988 Jan;166(1 Pt 1):173-80 [PMID: 3336675]
  17. Brain Res. 1984 Mar;315(1):117-24 [PMID: 6722572]
  18. J Comput Assist Tomogr. 1988 Nov-Dec;12(6):917-22 [PMID: 3183125]

MeSH Term

Age Factors
Cerebral Cortex
Female
Humans
Infant
Infant, Newborn
Magnetic Resonance Imaging
Male
Nerve Fibers, Myelinated
Reference Values
Retrospective Studies

Word Cloud

Created with Highcharts 10.0.0signalintensitymyelinationweeksPCAcortexperirolandicP-PREA-PSTMRgyriformalin-fixedbrainsinfantsgyrusimagesgavenervecellspurposestudymagneticresonanceperinatallycorrelatehistologicalfindingsfocusingMRI20neurologicallynormalneonates37-64postconceptionstudiedretrospectivelyreviewedfour37-46microscopicallyposteriorprecentralanteriorpostcentraldifferentadjacentsurroundingT1-weightedhigher41-44T2-weightedlower37-51Histologicalexaminationrevealedlittlefibreswithinconsiderablepresentinternalcapsulecentralcoronaradiatachangesmayreflectdegreealsoadvanceddevelopmentassociatedrapidproliferationformationoligodendroglialsynapsesdendritesanotherimportantlandmarkbrainmaturationneonateinfant

Similar Articles

Cited By