Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti.

Z Tu
Author Information
  1. Z Tu: Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA. jaketu@ag.arizona.edu

Abstract

Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal inverted repeats, potential to form a stable secondary structure, A+T richness, and putative 2- to 4-bp A+T-biased specific target sites. Evidence of previous mobility is presented for the Wukong elements. Elements of these three families are associated with 7 of 16 fully or partially sequenced Ae. aegypti genes. Characteristics of these mosquito elements indicate strong similarities to the miniature inverted-repeat transposable elements (MITEs) recently found to be associated with plant genes. MITE-like elements have also been reported in two species of Xenopus and in Homo sapiens. This characterization of multiple families of highly repetitive MITE-like elements in an invertebrate extends the range of these elements in eukaryotic genomes. A hypothesis is presented relating genome size and organization to the presence of highly reiterated MITE families. The association of MITE-like elements with Ae. aegypti genes shows the same bias toward noncoding regions as in plants. This association has potentially important implications for the evolution of gene regulation.

Associated Data

GENBANK | U87544; U87545; U87546; U87547; U87548; U87549; U87550; U87551; U88302; U88303; U88304; U88305; U88306; U88307

References

  1. Anal Biochem. 1984 May 1;138(2):267-84 [PMID: 6204550]
  2. Heredity (Edinb). 1987 Oct;59 ( Pt 2):253-8 [PMID: 3679880]
  3. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746-50 [PMID: 3459152]
  4. Hum Mol Genet. 1995;4 Spec No:1765-77 [PMID: 8541877]
  5. Mol Gen Genet. 1994 Nov 15;245(4):441-8 [PMID: 7808393]
  6. Trends Biochem Sci. 1994 Jun;19(6):240-4 [PMID: 8073501]
  7. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1443-8 [PMID: 8643651]
  8. Exp Parasitol. 1995 Nov;81(3):239-48 [PMID: 7498420]
  9. Cell. 1990 Apr 6;61(1):85-99 [PMID: 2107982]
  10. Nature. 1992 Mar 5;356(6364):37-41 [PMID: 1538779]
  11. Annu Rev Genet. 1989;23:251-87 [PMID: 2559652]
  12. Curr Opin Genet Dev. 1994 Dec;4(6):838-44 [PMID: 7888753]
  13. J Mol Biol. 1995 May 12;248(4):812-23 [PMID: 7752242]
  14. Methods Enzymol. 1989;180:262-88 [PMID: 2482418]
  15. Curr Opin Genet Dev. 1996 Dec;6(6):686-91 [PMID: 8994837]
  16. Nucleic Acids Res. 1990 Oct 11;18(19):5781-6 [PMID: 2170944]
  17. Parasitol Today. 1992 Jun;8(6):186-92 [PMID: 15463614]
  18. Curr Opin Genet Dev. 1996 Dec;6(6):743-8 [PMID: 8994846]
  19. Dev Biol. 1993 Feb;155(2):558-68 [PMID: 8432405]
  20. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8524-9 [PMID: 8710903]
  21. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1411-5 [PMID: 8108422]
  22. Nature. 1980 Apr 17;284(5757):604-7 [PMID: 7366731]
  23. Genetics. 1995 May;140(1):315-24 [PMID: 7635296]
  24. Genetica. 1992;86(1-3):55-66 [PMID: 1334918]
  25. Curr Opin Genet Dev. 1995 Dec;5(6):814-21 [PMID: 8745082]
  26. Curr Opin Cell Biol. 1995 Jun;7(3):371-5 [PMID: 7662367]
  27. Genetica. 1996 Oct;98(2):119-29 [PMID: 8976060]
  28. Trends Ecol Evol. 1995 Mar;10(3):123-6 [PMID: 21236980]
  29. Insect Mol Biol. 1993;2(4):205-13 [PMID: 9087558]
  30. Gene. 1989 Jan 30;75(1):73-83 [PMID: 2470653]
  31. Q Rev Biol. 1971 Jun;46(2):111-38 [PMID: 5160087]
  32. Curr Opin Genet Dev. 1996 Dec 1;6(6):683-5 [PMID: 9000014]
  33. Chromosoma. 1975 Jul 21;51(3):253-9 [PMID: 238803]
  34. Curr Opin Genet Dev. 1995 Apr;5(2):174-9 [PMID: 7613086]
  35. J Mol Biol. 1995 Nov 17;254(1):1-5 [PMID: 7473754]
  36. Plant Cell. 1994 Jun;6(6):907-16 [PMID: 8061524]
  37. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7704-11 [PMID: 9223252]
  38. Science. 1969 Jul 25;165(3891):349-57 [PMID: 5789433]
  39. Trends Genet. 1992 Jun;8(6):187-90 [PMID: 1323152]
  40. CRC Crit Rev Biochem. 1973 Sep;1(4):537-70 [PMID: 4201069]
  41. Curr Opin Genet Dev. 1993 Dec;3(6):855-64 [PMID: 8118210]
  42. J Med Entomol. 1992 Jan;29(1):125-8 [PMID: 1552521]
  43. Curr Opin Genet Dev. 1995 Dec 1;5(6):705-8 [PMID: 8791475]
  44. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373-7 [PMID: 2432595]
  45. Insect Mol Biol. 1993;2(1):7-12 [PMID: 9087537]
  46. Insect Biochem Mol Biol. 1995 Sep;25(8):939-58 [PMID: 7550249]
  47. Plant Cell. 1992 Oct;4(10):1283-94 [PMID: 1332797]
  48. Nucleic Acids Res. 1983 Jun 25;11(12):4201-9 [PMID: 6306578]
  49. Science. 1996 Nov 1;274(5288):765-8 [PMID: 8864112]
  50. Nucleic Acids Res. 1992 Aug 11;20(15):4095 [PMID: 1354853]
  51. Gene. 1996 Feb 12;168(2):127-33 [PMID: 8654932]
  52. Genet Res. 1991 Dec;58(3):225-32 [PMID: 1802804]
  53. Chromosoma. 1976 Jul 30;56(4):309-26 [PMID: 820526]
  54. Mol Biochem Parasitol. 1991 Feb;44(2):245-53 [PMID: 2052024]
  55. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  56. Genetica. 1992;86(1-3):215-46 [PMID: 1334910]
  57. Chromosoma. 1971 Mar 16;32(4):378-406 [PMID: 4995642]
  58. Nature. 1980 Apr 17;284(5757):601-3 [PMID: 6245369]
  59. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9374-7 [PMID: 8790336]

Grants

  1. HD 24869/NICHD NIH HHS

MeSH Term

Aedes
Animals
Base Sequence
DNA Transposable Elements
Genes, Insect
Molecular Sequence Data
Repetitive Sequences, Nucleic Acid
Sequence Alignment

Chemicals

DNA Transposable Elements

Word Cloud

Created with Highcharts 10.0.0elementsfamiliesaegyptigenestransposablemosquitoassociatedMITE-likeThreenovelWukongyellowfeverAedesrangegenomesequencestructuralsimilaritiessizepotentialpresentedAeminiatureinverted-repeathighlyassociationWujinWunengdescribedcopynumbers21003000perhaploidhighdegreessimilaritywithinfamilymanycommoncharacteristicsincludesmallcodingterminalinvertedrepeatsformstablesecondarystructureA+Trichnessputative2-4-bpA+T-biasedspecifictargetsitesEvidencepreviousmobilityElementsthree716fullypartiallysequencedCharacteristicsindicatestrongMITEsrecentlyfoundplantalsoreportedtwospeciesXenopusHomosapienscharacterizationmultiplerepetitiveinvertebrateextendseukaryoticgenomeshypothesisrelatingorganizationpresencereiteratedMITEshowsbiastowardnoncodingregionsplantspotentiallyimportantimplicationsevolutiongeneregulation

Similar Articles

Cited By