Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase.

D Quesada-Vincens, R Fellay, T Nasim, V Viprey, U Burger, J C Prome, W J Broughton, S Jabbouri
Author Information
  1. D Quesada-Vincens: LBMPS, Université de Genève, Chambésy/Genèva, Switzerland.

Abstract

Rhizobium sp. strain NGR234 produces a large family of lipochitooligosaccharide Nod factors carrying specific substituents. Among them are 3-O- (or 4-O-) and 6-O-carbamoyl groups, an N-methyl group, and a 2-O-methylfucose residue which may bear either 3-O-sulfate or 4-O-acetyl substitutions. Investigations on the genetic control of host specificity revealed a number of loci which directly affect Nod factor structure. Here we show that insertion and frameshift mutations in the nodZ gene abolish fucosylation of Nod factors. In vitro assays using GDP-L-fucose as the fucose donor show that fucosyltransferase activity is associated with the nodZ gene product (NodZ). NodZ is located in the soluble protein fraction of NGR234 cells. Together with extra copies of the nodD1 gene, the nodZ gene and its associated nod box were introduced into ANU265, which is NGR234 cured of the symbiotic plasmid. Crude extracts of this transconjugant possess fucosyltransferase activity. Fusion of a His6 tag to the NodZ protein expressed in Escherichia coli yielded a protein able to fucosylate both nonfucosylated NodNGR factors and oligomers of chitin. NodZ is inactive on monomeric N-acetyl-D-glucosamine and on desulfated Rhizobium meliloti Nod factors. Kinetic analyses showed that the NodZ protein is more active on oligomers of chitin than on nonfucosylated NodNGR factors. Pentameric chitin is the preferred substrate. These data suggest that fucosylation occurs before acylation of the Nod factors.

References

  1. Nature. 1990 Apr 19;344(6268):781-4 [PMID: 2330031]
  2. Cell. 1989 Jan 27;56(2):203-14 [PMID: 2643474]
  3. Nature. 1991 Nov 14;354(6349):125-30 [PMID: 1944592]
  4. Cell. 1991 Dec 20;67(6):1131-43 [PMID: 1760841]
  5. Mol Plant Microbe Interact. 1990 Sep-Oct;3(5):317-26 [PMID: 2134856]
  6. Nature. 1992 Jun 25;357(6380):655-60 [PMID: 1614514]
  7. Annu Rev Microbiol. 1992;46:497-531 [PMID: 1444265]
  8. Mol Microbiol. 1992 Dec;6(23):3575-84 [PMID: 1474899]
  9. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):625-9 [PMID: 8421697]
  10. Gene. 1993 May 15;127(1):15-21 [PMID: 8486283]
  11. J Biol Chem. 1993 Aug 25;268(24):18372-81 [PMID: 8349712]
  12. J Biol Chem. 1993 Sep 25;268(27):20134-42 [PMID: 8376372]
  13. Biochemistry. 1993 Oct 5;32(39):10430-5 [PMID: 8399187]
  14. J Biol Chem. 1993 Dec 25;268(36):27053-9 [PMID: 8262943]
  15. J Bacteriol. 1994 Feb;176(3):620-33 [PMID: 8300517]
  16. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2196-200 [PMID: 8134372]
  17. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2669-73 [PMID: 8146173]
  18. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3122-6 [PMID: 8159714]
  19. Mol Microbiol. 1994 Feb;11(4):793-804 [PMID: 8196551]
  20. Glycobiology. 1994 Apr;4(2):127-34 [PMID: 8054712]
  21. Biotechniques. 1994 May;16(5):800-2 [PMID: 8068328]
  22. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8418-22 [PMID: 8078897]
  23. Mol Plant Microbe Interact. 1994 Nov-Dec;7(6):684-95 [PMID: 7873777]
  24. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2706-9 [PMID: 7708710]
  25. J Biol Chem. 1995 Sep 29;270(39):22968-73 [PMID: 7559434]
  26. J Bacteriol. 1995 Nov;177(21):6276-81 [PMID: 7592394]
  27. Mol Microbiol. 1995 May;16(4):657-67 [PMID: 7476161]
  28. Mol Microbiol. 1995 Jul;17(2):387-97 [PMID: 7494487]
  29. Mol Microbiol. 1996 Jun;20(5):993-1000 [PMID: 8809752]
  30. Mol Microbiol. 1996 Jul;21(2):397-408 [PMID: 8858593]
  31. Mol Microbiol. 1996 Jul;21(2):409-19 [PMID: 8858594]
  32. Nature. 1997 May 22;387(6631):394-401 [PMID: 9163424]
  33. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648-52 [PMID: 377280]
  34. J Bacteriol. 1983 Jan;153(1):527-31 [PMID: 6571729]
  35. J Mol Biol. 1983 Jun 5;166(4):557-80 [PMID: 6345791]
  36. Gene. 1984 Sep;29(3):303-13 [PMID: 6237955]
  37. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5656-60 [PMID: 3898067]
  38. Gene. 1987;61(3):299-306 [PMID: 2833429]
  39. J Bacteriol. 1991 May;173(9):2872-8 [PMID: 2019559]

MeSH Term

Acetylglucosamine
Acylation
Bacterial Proteins
Chitin
Conjugation, Genetic
Escherichia coli
Frameshift Mutation
Fucose
Fucosyltransferases
Kinetics
Lipopolysaccharides
Mutagenesis, Insertional
Recombinant Fusion Proteins
Rhizobium
Substrate Specificity

Chemicals

Bacterial Proteins
Lipopolysaccharides
Recombinant Fusion Proteins
lipid-linked oligosaccharides
Chitin
Fucose
Fucosyltransferases
NodZ protein, bacteria
Acetylglucosamine

Word Cloud

Created with Highcharts 10.0.0factorsNodZNodproteinNGR234geneRhizobiumnodZfucosyltransferasechitinspstrainshowfucosylationactivityassociatednonfucosylatedNodNGRoligomersproduceslargefamilylipochitooligosaccharidecarryingspecificsubstituentsAmong3-O-4-O-6-O-carbamoylgroupsN-methylgroup2-O-methylfucoseresiduemaybeareither3-O-sulfate4-O-acetylsubstitutionsInvestigationsgeneticcontrolhostspecificityrevealednumberlocidirectlyaffectfactorstructureinsertionframeshiftmutationsabolishvitroassaysusingGDP-L-fucosefucosedonorproductlocatedsolublefractioncellsTogetherextracopiesnodD1nodboxintroducedANU265curedsymbioticplasmidCrudeextractstransconjugantpossessFusionHis6tagexpressedEscherichiacoliyieldedablefucosylateinactivemonomericN-acetyl-D-glucosaminedesulfatedmelilotiKineticanalysesshowedactivePentamericpreferredsubstratedatasuggestoccursacylation

Similar Articles

Cited By