Immunodetection of activated mitogen-activated protein kinase in vascular tissues.

L Yau, P Zahradka
Author Information
  1. L Yau: Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, Canada.

Abstract

Mitogen-activated protein kinase (MAPK) is a key modulator of cytoplasmic-nuclear signal transmission, and for this reason measurement of MAPK activity has become very popular. Monitoring of MAPK activity may be particularly relevant to the cardiovascular system where it has already been shown that the stimulation of cardiomyocytes and smooth muscle cells by stretch and by growth factors activates MAPK. Since both growth factors and mechanical stress are causal agents for certain pathologies, enhanced MAPK activity may be a good predictor of disease progression. A variety of methods have been designed to measure the activation of this enzyme including an in vitro assay coupled to either gel electrophoresis or binding to P81 paper, an activity gel assay to detect p42/44 isoforms and, more recently, monitoring MAPK phosphorylation using immunoblot detection. The validity of the latter method is based on the correlation between MAPK activity and the degree of phosphorylation. The antibodies have also been of use in the detection of MAPK translocation in cell monolayers. In this report, we discuss the advantages and disadvantages of all MAPK detection methods and demonstrate an additional application for the MAPK antibodies using an in vitro restenosis model. In addition, the utility of MAPK measurements to smooth muscle pathophysiology and vascular injury (as a predictor of injury) has been assessed.

References

  1. Biochem J. 1993 Nov 15;296 ( Pt 1):25-31 [PMID: 7504457]
  2. Cell. 1995 Jan 27;80(2):179-85 [PMID: 7834738]
  3. J Biol Chem. 1991 Jan 25;266(3):1914-20 [PMID: 1988454]
  4. J Biol Chem. 1991 Dec 25;266(36):24793-803 [PMID: 1662217]
  5. Dis Mon. 1993 Sep;39(9):613-70 [PMID: 8359109]
  6. Mol Endocrinol. 1992 May;6(5):845-54 [PMID: 1603090]
  7. J Biol Chem. 1995 Jul 14;270(28):16483-6 [PMID: 7622446]
  8. Biochem Pharmacol. 1996 Dec 13;52(11):1735-40 [PMID: 8986136]
  9. J Biol Chem. 1993 Jul 15;268(20):14553-6 [PMID: 8325833]
  10. J Biol Chem. 1991 Mar 5;266(7):4220-7 [PMID: 1705548]
  11. Cell Growth Differ. 1995 Jan;6(1):39-49 [PMID: 7536439]
  12. Mol Biol Cell. 1992 Jul;3(7):775-87 [PMID: 1325221]
  13. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4981-5 [PMID: 2052581]
  14. J Biol Chem. 1990 Jul 15;265(20):11487-94 [PMID: 2142153]
  15. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6940-3 [PMID: 2550926]
  16. J Cell Biol. 1993 Sep;122(5):1089-101 [PMID: 8394846]
  17. J Biol Chem. 1995 Jun 23;270(25):14843-6 [PMID: 7797459]
  18. Nature. 1990 Feb 15;343(6259):651-3 [PMID: 2154696]
  19. Curr Probl Cardiol. 1995 Mar;20(3):125-90 [PMID: 7600846]
  20. Cardiovasc Res. 1995 Oct;30(4):511-7 [PMID: 8574999]
  21. Circ Res. 1996 Apr;78(4):724-36 [PMID: 8635230]
  22. J Cell Biol. 1971 Jul;50(1):172-86 [PMID: 4327464]
  23. Cell. 1993 Dec 3;75(5):977-84 [PMID: 8252633]
  24. Anal Biochem. 1989 Nov 15;183(1):139-43 [PMID: 2559625]
  25. Mol Pharmacol. 1994 Dec;46(6):1077-83 [PMID: 7808427]
  26. Eur J Biochem. 1990 Nov 13;193(3):661-9 [PMID: 2174361]
  27. J Biol Chem. 1992 Dec 5;267(34):24796-804 [PMID: 1332967]
  28. Mol Cell Biol. 1992 Mar;12(3):915-27 [PMID: 1545823]
  29. EMBO J. 1993 Dec 15;12(13):5097-104 [PMID: 8262053]
  30. Circ Res. 1995 Feb;76(2):183-90 [PMID: 7834828]
  31. J Biol Chem. 1992 Jan 15;267(2):1088-92 [PMID: 1730637]
  32. Trends Pharmacol Sci. 1994 Jul;15(7):239-44 [PMID: 7940986]
  33. J Am Coll Cardiol. 1994 Nov 1;24(5):1398-405 [PMID: 7930266]
  34. Biochem J. 1995 Jul 15;309 ( Pt 2):437-43 [PMID: 7626007]
  35. J Biol Chem. 1992 Oct 5;267(28):20293-7 [PMID: 1400347]
  36. Arterioscler Thromb. 1994 Nov;14(11):1846-53 [PMID: 7947611]
  37. EMBO J. 1993 Apr;12(4):1681-92 [PMID: 8385610]
  38. J Clin Invest. 1994 Jun;93(6):2387-92 [PMID: 8200972]
  39. Cell. 1993 Jan 29;72 (2):269-78 [PMID: 8381049]
  40. J Biol Chem. 1993 Jun 5;268(16):12069-76 [PMID: 7685031]

MeSH Term

Animals
Blotting, Western
Calcium-Calmodulin-Dependent Protein Kinases
Cells, Cultured
Coronary Vessels
Enzyme Activation
Immunohistochemistry
Muscle, Smooth, Vascular
Swine

Chemicals

Calcium-Calmodulin-Dependent Protein Kinases

Word Cloud

Created with Highcharts 10.0.0MAPKactivitydetectionproteinkinasemaysmoothmusclegrowthfactorspredictormethodsvitroassaygelphosphorylationusingantibodiesvascularinjuryMitogen-activatedkeymodulatorcytoplasmic-nuclearsignaltransmissionreasonmeasurementbecomepopularMonitoringparticularlyrelevantcardiovascularsystemalreadyshownstimulationcardiomyocytescellsstretchactivatesSincemechanicalstresscausalagentscertainpathologiesenhancedgooddiseaseprogressionvarietydesignedmeasureactivationenzymeincludingcoupledeitherelectrophoresisbindingP81paperdetectp42/44isoformsrecentlymonitoringimmunoblotvaliditylattermethodbasedcorrelationdegreealsousetranslocationcellmonolayersreportdiscussadvantagesdisadvantagesdemonstrateadditionalapplicationrestenosismodeladditionutilitymeasurementspathophysiologyassessedImmunodetectionactivatedmitogen-activatedtissues

Similar Articles

Cited By