Dendritic cells efficiently induce protective antiviral immunity.

B Ludewig, S Ehl, U Karrer, B Odermatt, H Hengartner, R M Zinkernagel
Author Information
  1. B Ludewig: Institute of Experimental Immunology, Zürich, Switzerland. LudewigB@pathol.unizh.ch

Abstract

Cytotoxic T lymphocytes (CTL) are essential for effective immunity to various viral infections. Because of the high speed of viral replication, control of viral infections imposes demanding functional and qualitative requirements on protective T-cell responses. Dendritic cells (DC) have been shown to efficiently acquire, transport, and present antigens to naive CTL in vitro and in vivo. In this study, we assessed the potential of DC, either pulsed with the lymphocytic choriomeningitis virus (LCMV)-specific peptide GP33-41 or constitutively expressing the respective epitope, to induce LCMV-specific antiviral immunity in vivo. Comparing different application routes, we found that only 100 to 1,000 DC had to reach the spleen to achieve protective levels of CTL activation. The DC-induced antiviral immune response developed rapidly and was long lasting. Already at day 2 after a single intravenous immunization with high doses of DC (1 x 10(5) to 5 x 10(5)), mice were fully protected against LCMV challenge infection, and direct ex vivo cytotoxicity was detectable at day 4 after DC immunization. At day 60, mice were still protected against LCMV challenge infection. Importantly, priming with DC also conferred protection against infections in which the homing of CTL into peripheral organs is essential: DC-immunized mice rapidly cleared an infection with recombinant vaccinia virus-LCMV from the ovaries and eliminated LCMV from the brain, thereby avoiding lethal choriomeningitis. A comparison of DC constitutively expressing the GP33-41 epitope with exogenously peptide-pulsed DC showed that in vivo CTL priming with peptide-loaded DC is not limited by turnover of peptide-major histocompatibility complex class I complexes. We conclude that the priming of antiviral CTL responses with DC is highly efficient, rapid, and long lasting. Therefore, the use of DC should be considered as an efficient means of immunization for antiviral vaccination strategies.

References

  1. Transplantation. 1967 Jul;5(4):Suppl:962-6 [PMID: 4860623]
  2. J Virol Methods. 1991 Jun;33(1-2):191-8 [PMID: 1939506]
  3. J Immunol. 1981 Apr;126(4):1614-9 [PMID: 7009746]
  4. Med Microbiol Immunol. 1986;175(2-3):141-3 [PMID: 3487706]
  5. Eur J Immunol. 1987 Jul;17(7):937-42 [PMID: 2886344]
  6. J Exp Med. 1988 Feb 1;167(2):646-51 [PMID: 3258010]
  7. J Immunol. 1988 May 1;140(9):3186-93 [PMID: 2834454]
  8. J Exp Med. 1989 Apr 1;169(4):1255-64 [PMID: 2784483]
  9. Immunology. 1991 Nov;74(3):399-406 [PMID: 1769689]
  10. J Exp Med. 1992 Nov 1;176(5):1273-81 [PMID: 1402673]
  11. J Exp Med. 1992 Dec 1;176(6):1693-702 [PMID: 1460426]
  12. J Exp Med. 1993 Aug 1;178(2):479-88 [PMID: 7688024]
  13. Immunol Today. 1993 Aug;14(8):383-7 [PMID: 8397776]
  14. Int Immunol. 1993 Aug;5(8):849-57 [PMID: 8398980]
  15. Cell Immunol. 1993 Oct 15;151(2):460-6 [PMID: 8402949]
  16. Eur J Immunol. 1994 Mar;24(3):605-10 [PMID: 8125131]
  17. Nature. 1994 May 5;369(6475):31-7 [PMID: 8164737]
  18. Curr Opin Immunol. 1994 Apr;6(2):320-6 [PMID: 8011216]
  19. J Virol. 1995 Feb;69(2):1059-70 [PMID: 7815484]
  20. J Immunol. 1995 Apr 15;154(8):4010-7 [PMID: 7706740]
  21. J Exp Med. 1995 Jul 1;182(1):255-60 [PMID: 7540653]
  22. J Exp Med. 1995 Jul 1;182(1):261-6 [PMID: 7540654]
  23. J Immunol. 1995 Oct 1;155(7):3313-21 [PMID: 7561024]
  24. Nat Med. 1995 Dec;1(12):1297-302 [PMID: 7489412]
  25. Nat Med. 1996 Jan;2(1):52-8 [PMID: 8564842]
  26. J Exp Med. 1996 Jan 1;183(1):87-97 [PMID: 8551248]
  27. J Immunol. 1996 Apr 15;156(8):2918-26 [PMID: 8609412]
  28. J Exp Med. 1996 Aug 1;184(2):465-72 [PMID: 8760800]
  29. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9716-23 [PMID: 8790397]
  30. Nat Med. 1996 Oct;2(10):1122-8 [PMID: 8837611]
  31. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):640-5 [PMID: 9012837]
  32. J Leukoc Biol. 1997 Feb;61(2):125-32 [PMID: 9021916]
  33. J Exp Med. 1997 Feb 17;185(4):777-84 [PMID: 9034155]
  34. Infect Immun. 1997 Aug;65(8):3386-90 [PMID: 9234802]
  35. Nature. 1997 Aug 21;388(6644):782-7 [PMID: 9285591]
  36. J Immunol Methods. 1997 Aug 22;207(1):33-42 [PMID: 9328584]
  37. Eur J Immunol. 1997 Dec;27(12):3404-13 [PMID: 9464829]
  38. Eur J Immunol. 1989 Mar;19(3):417-24 [PMID: 2468501]
  39. Nature. 1989 Nov 30;342(6249):559-61 [PMID: 2573841]
  40. J Exp Med. 1990 May 1;171(5):1815-20 [PMID: 1692084]
  41. Nature. 1990 Aug 16;346(6285):629-33 [PMID: 1696684]
  42. Nature. 1990 Aug 16;346(6285):655-7 [PMID: 2166918]
  43. Science. 1991 Jan 11;251(4990):195-8 [PMID: 1824801]
  44. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):991-3 [PMID: 1992491]
  45. Annu Rev Immunol. 1991;9:271-96 [PMID: 1910679]
  46. Transplantation. 1976 Aug;22(2):138-49 [PMID: 61634]

MeSH Term

Animals
Antigens, Viral
Cells, Cultured
Dendritic Cells
Glycoproteins
Histocompatibility Antigens Class I
Lymphocytic Choriomeningitis
Lymphocytic choriomeningitis virus
Mice
Mice, Inbred C57BL
Peptide Fragments
T-Lymphocytes, Cytotoxic
Time Factors
Tumor Cells, Cultured
Vaccination
Viral Proteins

Chemicals

Antigens, Viral
Glycoproteins
Histocompatibility Antigens Class I
Peptide Fragments
Viral Proteins
glycoprotein peptide 33-41, Lymphocytic choriomeningitis virus