Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination.

D E Langworthy, R D Stapleton, G S Sayler, R H Findlay
Author Information
  1. D E Langworthy: Department of Microbiology, Miami University, Oxford, Ohio 45056, USA.

Abstract

The phenotypic and genotypic adaptation of a freshwater sedimentary microbial community to elevated (22 to 217 microgram [dry weight] of sediment-1) levels of polycyclic aromatic hydrocarbons (PAHs) was determined by using an integrated biomolecular approach. Central to the approach was the use of phospholipid fatty acid (PLFA) profiles to characterize the microbial community structure and nucleic acid analysis to quantify the frequency of degradative genes. The study site was the Little Scioto River, a highly impacted, channelized riverine system located in central Ohio. This study site is a unique lotic system, with all sampling stations having similar flow and sediment characteristics both upstream and downstream from the source of contamination. These characteristics allowed for the specific analysis of PAH impact on the microbial community. PAH concentrations in impacted sediments ranged from 22 to 217 microgram (dry weight) of sediment-1, while PAH concentrations in ambient sediments ranged from below detection levels to 1.5 microgram (dry weight) of sediment-1. Total microbial biomass measured by phospholipid phosphate (PLP) analysis ranged from 95 to 345 nmol of PLP g (dry weight) of sediment-1. Nucleic acid analysis showed the presence of PAH-degradative genes at all sites, although observed frequencies were typically higher at contaminated sites. Principal component analysis of PLFA profiles indicated that moderate to high PAH concentrations altered microbial community structure and that seasonal changes were comparable in magnitude to the effects of PAH pollution. These data indicate that this community responded to PAH contamination at both the phenotypic and the genotypic level.

References

  1. Appl Environ Microbiol. 1996 Sep;62(9):3344-9 [PMID: 8795224]
  2. Microbiol Rev. 1981 Mar;45(1):180-209 [PMID: 7012571]
  3. Appl Environ Microbiol. 1982 Nov;44(5):1026-9 [PMID: 7181499]
  4. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991-5 [PMID: 6326095]
  5. Appl Environ Microbiol. 1988 May;54(5):1079-84 [PMID: 3389805]
  6. Appl Environ Microbiol. 1984 Nov;48(5):988-93 [PMID: 6508314]
  7. Appl Environ Microbiol. 1997 Jun;63(6):2330-7 [PMID: 9172352]
  8. Appl Environ Microbiol. 1981 Jan;41(1):199-202 [PMID: 16345685]
  9. Bioscience. 1989 Sep;39(8):535-41 [PMID: 11542183]
  10. Microb Ecol. 1988 Jul;16(1):73-84 [PMID: 24201534]
  11. Can J Microbiol. 1990 Mar;36(3):169-75 [PMID: 2111203]
  12. Microb Ecol. 1998 Jul;36(1):23-30 [PMID: 9622561]
  13. Can J Biochem Physiol. 1959 Aug;37(8):911-7 [PMID: 13671378]
  14. Environ Health Perspect. 1995 Jun;103 Suppl 5:107-11 [PMID: 8565896]
  15. Gene. 1987;55(1):19-28 [PMID: 3623105]
  16. J Biol Chem. 1989 Apr 5;264(10):5435-41 [PMID: 2647718]
  17. Gene. 1993 May 15;127(1):31-7 [PMID: 8486285]
  18. Microb Ecol. 1990 Jan;19(1):1-20 [PMID: 24196251]
  19. Appl Environ Microbiol. 1989 Nov;55(11):2888-93 [PMID: 16348051]
  20. Microb Ecol. 1992 Sep;24(2):199-213 [PMID: 24193137]
  21. J Biol Chem. 1989 Sep 5;264(25):14940-6 [PMID: 2670929]
  22. Biodegradation. 1993-1994;4(4):303-21 [PMID: 7516749]

MeSH Term

Adaptation, Physiological
Anthracenes
Biodegradation, Environmental
Biomass
DNA, Ribosomal
Fatty Acids
Genotype
Geologic Sediments
Gram-Negative Bacteria
Naphthalenes
Phenotype
Phospholipids
Polycyclic Aromatic Hydrocarbons
RNA, Ribosomal, 16S
Seasons
Water Microbiology
Water Pollutants, Chemical

Chemicals

Anthracenes
DNA, Ribosomal
Fatty Acids
Naphthalenes
Phospholipids
Polycyclic Aromatic Hydrocarbons
RNA, Ribosomal, 16S
Water Pollutants, Chemical
naphthalene
anthracene

Word Cloud

Created with Highcharts 10.0.0microbialcommunityPAHanalysissediment-1phenotypicmicrogramacidcontaminationconcentrationsrangeddryweightgenotypic22217levelspolycyclicaromaticapproachphospholipidPLFAprofilesstructuregenesstudysiteimpactedriverinesystemcharacteristicssedimentsPLPsitesadaptationfreshwatersedimentaryelevated[dryweight]hydrocarbonsPAHsdeterminedusingintegratedbiomolecularCentralusefattycharacterizenucleicquantifyfrequencydegradativeLittleSciotoRiverhighlychannelizedlocatedcentralOhiouniqueloticsamplingstationssimilarflowsedimentupstreamdownstreamsourceallowedspecificimpactambientdetection15Totalbiomassmeasuredphosphate95345nmolgNucleicshowedpresencePAH-degradativealthoughobservedfrequenciestypicallyhighercontaminatedPrincipalcomponentindicatedmoderatehighalteredseasonalchangescomparablemagnitudeeffectspollutiondataindicaterespondedlevelGenotypicresponseshydrocarbon

Similar Articles

Cited By (24)