N-glycoprotein biosynthesis in plants: recent developments and future trends.

P Lerouge, M Cabanes-Macheteau, C Rayon, A C Fischette-Lainé, V Gomord, L Faye
Author Information
  1. P Lerouge: Laboratoire des Transports Intracellulaires, CNRS-ESA 6037, IFRMP 23, Université de Rouen, Mont Saint Aignan, France.

Abstract

N-glycosylation is a major modification of proteins in plant cells. This process starts in the endoplasmic reticulum by the co-translational transfer of a precursor oligosaccharide to specific asparagine residues of the nascent polypeptide chain. Processing of this oligosaccharide into high-mannose-type, paucimannosidic-type, hybrid-type or complex-type N-glycans occurs in the secretory pathway as the glycoprotein moves from the endoplasmic reticulum to its final destination. At the end of their maturation, some plant N-glycans have typical structures that differ from those found in their mammalian counterpart by the absence of sialic acid and the presence of beta(1,2)-xylose and alpha( 1,3)-fucose residues. Glycosidases and glycosyltransferases that respectively catalyse the stepwise trimming and addition of sugar residues are generally considered as working in a co-ordinated and highly ordered fashion to form mature N-glycans. On the basis of this assembly line concept, fast progress is currently made by using N-linked glycan structures as milestones of the intracellular transport of proteins along the plant secretory pathway. Further developments of this approach will need to more precisely define the topological distribution of glycosyltransferases within a plant Golgi stack. In contrast with their acknowledged role in the targeting of lysosomal hydrolases in mammalian cells, N-glycans have no specific function in the transport of glycoproteins into the plant vacuole. However, the presence of N-glycans, regardless of their structures, is necessary for an efficient secretion of plant glycoproteins. In the biotechnology field, transgenic plants are rapidly emerging as an important system for the production of recombinant glycoproteins intended for therapeutic purposes, which is a strong motivation to speed up research in plant glycobiology. In this regard, the potential and limits of plant cells as a factory for the production of mammalian glycoproteins will be illustrated.

References

  1. Plant Cell. 1989 Jan;1(1):95-104 [PMID: 2535471]
  2. Plant Physiol. 1992 Jan;98(1):399-401 [PMID: 16668644]
  3. J Allergy Clin Immunol. 1996 Jun;97(6):1264-71 [PMID: 8648022]
  4. Eur J Biochem. 1990 Jul 31;191(2):287-95 [PMID: 2143471]
  5. Biochem Biophys Res Commun. 1991 Sep 16;179(2):713-9 [PMID: 1716885]
  6. J Biol Chem. 1987 Oct 5;262(28):13392-403 [PMID: 3654619]
  7. Allergy. 1987 Aug;42(6):464-70 [PMID: 2444130]
  8. J Biochem. 1988 Jun;103(6):944-9 [PMID: 3170523]
  9. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):728-32 [PMID: 8290590]
  10. Eur J Biochem. 1991 Jul 1;199(1):169-79 [PMID: 2065672]
  11. Plant Physiol. 1993 Aug;102(4):1109-18 [PMID: 8278542]
  12. Eur J Biochem. 1992 Feb 15;204(1):313-6 [PMID: 1740144]
  13. Science. 1993 Aug 20;261(5124):1032-5 [PMID: 17739625]
  14. J Cell Biol. 1983 Apr;96(4):999-1007 [PMID: 6833399]
  15. J Biol Chem. 1991 Mar 5;266(7):4168-72 [PMID: 1705547]
  16. Plant Physiol. 1993 Jun;102(2):445-58 [PMID: 8108510]
  17. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2085-90 [PMID: 9050909]
  18. Cell. 1996 Mar 8;84(5):769-79 [PMID: 8625414]
  19. Science. 1996 Jun 21;272(5269):1808-10 [PMID: 8650583]
  20. Glycoconj J. 1996 Aug;13(4):555-66 [PMID: 8872112]
  21. Planta. 1989 Dec;180(1):96-104 [PMID: 24201849]
  22. J Biol Chem. 1989 Oct 15;264(29):17494-501 [PMID: 2793869]
  23. Anal Biochem. 1993 Feb 15;209(1):104-8 [PMID: 7682035]
  24. Eur J Biochem. 1992 Feb 1;203(3):401-13 [PMID: 1531192]
  25. Arch Biochem Biophys. 1986 Jun;247(2):261-71 [PMID: 3521492]
  26. J Biol Chem. 1997 Dec 12;272(50):31340-7 [PMID: 9395463]
  27. Glycobiology. 1995 Jul;5(5):517-23 [PMID: 8563138]
  28. Plant J. 1997 Dec;12(6):1411-7 [PMID: 9450345]
  29. Plant Physiol. 1995 Apr;107(4):1129-38 [PMID: 7770522]
  30. J Allergy Clin Immunol. 1997 Sep;100(3):327-34 [PMID: 9314344]
  31. J Biol Chem. 1986 Aug 5;261(22):10021-4 [PMID: 3733700]
  32. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913-7 [PMID: 8302866]
  33. Eur J Immunol. 1994 Jan;24(1):131-8 [PMID: 8020548]
  34. Planta. 1987 Feb;170(2):217-24 [PMID: 24232881]
  35. Eur J Biochem. 1997 Feb 1;243(3):695-700 [PMID: 9057834]
  36. EMBO J. 1992 Apr;11(4):1297-301 [PMID: 1563346]
  37. Eur J Biochem. 1986 Aug 1;158(3):655-61 [PMID: 3089787]
  38. Eur J Biochem. 1987 Jul 15;166(2):321-4 [PMID: 3609011]
  39. Glycoconj J. 1996 Dec;13(6):977-83 [PMID: 8981089]
  40. Carbohydr Res. 1992 Dec 15;236:181-93 [PMID: 1337865]
  41. J Biol Chem. 1978 May 25;253(10):3468-76 [PMID: 565772]
  42. J Biol Chem. 1988 Dec 25;263(36):19796-803 [PMID: 2848842]
  43. Annu Rev Biochem. 1985;54:631-64 [PMID: 3896128]
  44. Eur J Biochem. 1986 Dec 15;161(3):779-85 [PMID: 3792315]
  45. Glycoconj J. 1995 Dec;12(6):780-6 [PMID: 8748155]
  46. Carbohydr Res. 1996 Jun 21;287(2):203-12 [PMID: 8766207]
  47. J Biol Chem. 1979 Nov 10;254(21):10715-9 [PMID: 500606]
  48. Cell. 1995 May 5;81(3):309-12 [PMID: 7736583]
  49. Eur J Biochem. 1987 Jul 15;166(2):311-20 [PMID: 3609010]
  50. J Cell Biol. 1984 Jul;99(1 Pt 1):133-40 [PMID: 6429153]
  51. Cell. 1995 Oct 6;83(1):129-35 [PMID: 7553864]
  52. Eur J Biochem. 1995 Oct 15;233(2):458-66 [PMID: 7588788]
  53. Glycoconj J. 1997 Aug;14(5):643-6 [PMID: 9298698]
  54. J Cell Biochem. 1982;18(1):67-85 [PMID: 6279685]
  55. Plant Physiol. 1986 Jun;81(2):383-9 [PMID: 16664826]
  56. Carbohydr Res. 1989 Oct 31;193:249-56 [PMID: 2611784]
  57. Plant Physiol. 1987 Aug;84(4):1301-8 [PMID: 16665602]
  58. J Biol Chem. 1984 May 25;259(10):6351-7 [PMID: 6373756]
  59. J Biol Chem. 1996 Oct 25;271(43):26653-8 [PMID: 8900140]
  60. Plant Physiol. 1986 May;81(1):320-2 [PMID: 16664800]
  61. Biochemistry. 1990 Feb 27;29(8):2168-76 [PMID: 2139344]
  62. Annu Rev Genet. 1984;18:525-52 [PMID: 6241454]
  63. Glycobiology. 1996 Sep;6(6):611-8 [PMID: 8922956]
  64. Glycobiology. 1999 Apr;9(4):365-72 [PMID: 10089210]
  65. J Biol Chem. 1990 Sep 25;265(27):16271-9 [PMID: 2168886]
  66. Cell. 1995 Oct 6;83(1):121-7 [PMID: 7553863]
  67. Anal Biochem. 1993 Jun;211(2):205-9 [PMID: 8317695]
  68. Plant Physiol. 1999 Feb;119(2):725-34 [PMID: 9952469]
  69. J Cell Biol. 1986 Apr;102(4):1284-97 [PMID: 3958046]
  70. Plant Physiol. 1989 Mar;89(3):845-51 [PMID: 16666631]
  71. J Biol Chem. 1990 May 15;265(14):7793-8 [PMID: 2335505]
  72. Biochemistry. 1989 Oct 3;28(20):8108-16 [PMID: 2532539]
  73. Plant Physiol. 1984 Sep;76(1):228-32 [PMID: 16663804]
  74. J Biochem. 1986 Jul;100(1):1-10 [PMID: 3759923]
  75. Carbohydr Res. 1991 Jun 25;213:215-27 [PMID: 1933938]
  76. J Cell Physiol. 1987 Jun;131(3):302-17 [PMID: 3036885]
  77. Glycobiology. 1996 Jun;6(4):471-7 [PMID: 8842712]
  78. Plant J. 1996 Oct;10(4):713-9 [PMID: 8998501]
  79. FEBS Lett. 1997 Sep 29;415(2):186-91 [PMID: 9350993]
  80. Glycobiology. 1996 Jan;6(1):23-32 [PMID: 8991505]
  81. Plant Physiol. 1987 Nov;85(3):741-5 [PMID: 16665770]

MeSH Term

Animals
Biochemistry
Carbohydrate Conformation
Carbohydrate Sequence
Glycoproteins
Humans
Molecular Biology
Molecular Sequence Data
Plant Proteins
Plants
Protein Engineering

Chemicals

Glycoproteins
Plant Proteins

Word Cloud

Created with Highcharts 10.0.0plantN-glycansglycoproteinscellsresiduesstructuresmammalianproteinsendoplasmicreticulumoligosaccharidespecificsecretorypathwaypresence1glycosyltransferasestransportdevelopmentswillproductionN-glycosylationmajormodificationprocessstartsco-translationaltransferprecursorasparaginenascentpolypeptidechainProcessinghigh-mannose-typepaucimannosidic-typehybrid-typecomplex-typeoccursglycoproteinmovesfinaldestinationendmaturationtypicaldifferfoundcounterpartabsencesialicacidbeta2-xylosealpha3-fucoseGlycosidasesrespectivelycatalysestepwisetrimmingadditionsugargenerallyconsideredworkingco-ordinatedhighlyorderedfashionformmaturebasisassemblylineconceptfastprogresscurrentlymadeusingN-linkedglycanmilestonesintracellularalongapproachneedpreciselydefinetopologicaldistributionwithinGolgistackcontrastacknowledgedroletargetinglysosomalhydrolasesfunctionvacuoleHoweverregardlessnecessaryefficientsecretionbiotechnologyfieldtransgenicplantsrapidlyemergingimportantsystemrecombinantintendedtherapeuticpurposesstrongmotivationspeedresearchglycobiologyregardpotentiallimitsfactoryillustratedN-glycoproteinbiosynthesisplants:recentfuturetrends

Similar Articles

Cited By