Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility.

S C Baker, S J Ferguson, B Ludwig, M D Page, O M Richter, R J van Spanning
Author Information
  1. S C Baker: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom. bioc0052@ermine.ox.ac.uk

Abstract

Paracoccus denitrificans and its near relative Paracoccus versutus (formerly known as Thiobacilllus versutus) have been attracting increasing attention because the aerobic respiratory system of P. denitrificans has long been regarded as a model for that of the mitochondrion, with which there are many components (e.g., cytochrome aa3 oxidase) in common. Members of the genus exhibit a great range of metabolic flexibility, particularly with respect to processes involving respiration. Prominent examples of flexibility are the use in denitrification of nitrate, nitrite, nitrous oxide, and nitric oxide as alternative electron acceptors to oxygen and the ability to use C1 compounds (e.g., methanol and methylamine) as electron donors to the respiratory chains. The proteins required for these respiratory processes are not constitutive, and the underlying complex regulatory systems that regulate their expression are beginning to be unraveled. There has been uncertainty about whether transcription in a member of the alpha-3 Proteobacteria such as P. denitrificans involves a conventional sigma70-type RNA polymerase, especially since canonical -35 and -10 DNA binding sites have not been readily identified. In this review, we argue that many genes, in particular those encoding constitutive proteins, may be under the control of a sigma70 RNA polymerase very closely related to that of Rhodobacter capsulatus. While the main focus is on the structure and regulation of genes coding for products involved in respiratory processes in Paracoccus, the current state of knowledge of the components of such respiratory pathways, and their biogenesis, is also reviewed.

References

  1. J Biochem. 1997 Jan;121(1):161-71 [PMID: 9058208]
  2. Mol Microbiol. 1996 Mar;19(6):1307-18 [PMID: 8730872]
  3. J Bacteriol. 2001 Jan;183(2):664-70 [PMID: 11133961]
  4. Proc Natl Acad Sci U S A. 1980 Jan;77(1):196-200 [PMID: 6244543]
  5. Adv Microb Physiol. 1986;27:113-210 [PMID: 3020939]
  6. J Biol Chem. 1996 Feb 2;271(5):2762-8 [PMID: 8576252]
  7. Appl Environ Microbiol. 1994 Jan;60(1):141-8 [PMID: 8117073]
  8. Gene. 1991 Jun 15;102(1):143-4 [PMID: 1650732]
  9. Nature. 1995 Aug 24;376(6542):660-9 [PMID: 7651515]
  10. FEMS Microbiol Lett. 1994 Aug 1;121(1):1-9 [PMID: 8082820]
  11. J Bacteriol. 1995 Aug;177(15):4311-20 [PMID: 7543472]
  12. J Bacteriol. 1995 Jul;177(14):3972-8 [PMID: 7608069]
  13. Plasmid. 1990 Nov;24(3):227-34 [PMID: 1963949]
  14. Gene. 1996 Oct 17;176(1-2):177-84 [PMID: 8918250]
  15. FEBS Lett. 1986 Sep 29;206(1):154-6 [PMID: 3019767]
  16. Arch Microbiol. 1993;160(5):358-62 [PMID: 8257281]
  17. Biochim Biophys Acta. 1990 May 15;1017(1):57-62 [PMID: 2161257]
  18. Biotechnol Appl Biochem. 1991 Feb;13(1):112-9 [PMID: 2054101]
  19. Eur J Biochem. 1983 Dec 15;137(3):597-602 [PMID: 6319128]
  20. Int J Syst Bacteriol. 1996 Oct;46(4):1125-30 [PMID: 8863446]
  21. Plasmid. 1995 Jul;34(1):11-21 [PMID: 7480167]
  22. J Bacteriol. 1993 Apr;175(7):2037-45 [PMID: 8458846]
  23. J Bacteriol. 1994 Oct;176(20):6188-91 [PMID: 7928987]
  24. Appl Environ Microbiol. 1995 Aug;61(8):2852-8 [PMID: 7487017]
  25. EMBO J. 1983;2(7):1055-60 [PMID: 6313351]
  26. J Gen Microbiol. 1992 Mar;138(3):437-43 [PMID: 1317404]
  27. J Bacteriol. 1991 Nov;173(21):6962-70 [PMID: 1657872]
  28. Trends Biochem Sci. 1998 Mar;23(3):103-8 [PMID: 9581502]
  29. Eur J Biochem. 1997 Jun 15;246(3):618-24 [PMID: 9219517]
  30. J Bacteriol. 1992 Dec;174(23):7762-9 [PMID: 1332944]
  31. Int J Syst Bacteriol. 1990 Jul;40(3):287-91 [PMID: 2397196]
  32. Eur J Biochem. 1994 Jun 1;222(2):561-71 [PMID: 8020493]
  33. Antonie Van Leeuwenhoek. 1994;66(1-3):111-27 [PMID: 7747927]
  34. Microbiology (Reading). 1998 Feb;144 ( Pt 2):467-477 [PMID: 9493384]
  35. J Bacteriol. 1993 Oct;175(19):6254-9 [PMID: 8407797]
  36. Biochemistry. 1991 Sep 3;30(35):8678-84 [PMID: 1909571]
  37. J Bacteriol. 1987 Apr;169(4):1712-7 [PMID: 3558322]
  38. FEMS Microbiol Lett. 1998 May 1;162(1):61-8 [PMID: 9595664]
  39. Eur J Biochem. 1987 Jun 15;165(3):665-70 [PMID: 3036513]
  40. J Bacteriol. 1997 Jun;179(11):3534-40 [PMID: 9171397]
  41. Nat Struct Biol. 1995 Nov;2(11):975-82 [PMID: 7583671]
  42. J Bacteriol. 1995 Aug;177(16):4772-8 [PMID: 7642505]
  43. Mol Gen Genet. 1996 Feb 5;250(2):189-96 [PMID: 8628218]
  44. J Bacteriol. 1992 Apr;174(7):2394-7 [PMID: 1551856]
  45. FEBS Lett. 1995 Feb 27;360(2):151-4 [PMID: 7875319]
  46. Biochem Biophys Res Commun. 1992 May 15;184(3):1181-9 [PMID: 1590782]
  47. Eur J Biochem. 1993 Mar 1;212(2):467-76 [PMID: 8383047]
  48. Annu Rev Biochem. 1990;59:569-96 [PMID: 2165384]
  49. Microbiology (Reading). 1997 Dec;143(12):3767-3774 [PMID: 33657712]
  50. EMBO J. 1987 Sep;6(9):2825-33 [PMID: 16453796]
  51. Biochem Soc Trans. 1989 Dec;17(6):991-3 [PMID: 2697623]
  52. Science. 1997 Sep 5;277(5331):1453-62 [PMID: 9278503]
  53. J Biol Chem. 1988 Apr 5;263(10):4820-7 [PMID: 3127391]
  54. J Biol Chem. 1988 Aug 25;263(24):11962-70 [PMID: 2841340]
  55. J Biol Chem. 1998 Oct 30;273(44):28785-90 [PMID: 9786877]
  56. Biochem J. 1995 Aug 1;309 ( Pt 3):983-92 [PMID: 7639719]
  57. Biochim Biophys Acta. 1995 Dec 12;1232(3):97-173 [PMID: 8534676]
  58. Antonie Van Leeuwenhoek. 1997 Feb;71(1-2):43-58 [PMID: 9049017]
  59. Biochem J. 1995 Aug 15;310 ( Pt 1):311-4 [PMID: 7646461]
  60. Eur J Biochem. 1987 Sep 15;167(3):431-9 [PMID: 2820725]
  61. J Biol Chem. 1991 Jul 15;266(20):12889-95 [PMID: 2071578]
  62. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3309-13 [PMID: 8386371]
  63. J Bacteriol. 1985 Sep;163(3):837-40 [PMID: 3928599]
  64. J Bacteriol. 1996 Nov;178(21):6296-9 [PMID: 8892832]
  65. J Bacteriol. 1996 Mar;178(6):1532-8 [PMID: 8626278]
  66. Nucleic Acids Res. 1982 May 11;10(9):2963-70 [PMID: 7099971]
  67. Int J Syst Bacteriol. 1997 Jul;47(3):727-34 [PMID: 9226904]
  68. Antonie Van Leeuwenhoek. 1997 Feb;71(1-2):33-41 [PMID: 9049016]
  69. Appl Environ Microbiol. 1996 Dec;62(12):4433-40 [PMID: 8953714]
  70. Eur J Biochem. 1988 Mar 15;172(3):543-6 [PMID: 2832167]
  71. J Mol Biol. 1983 May 15;166(2):241-7 [PMID: 6343617]
  72. Biochemistry. 1992 Aug 4;31(30):6925-32 [PMID: 1637825]
  73. J Bacteriol. 1994 Jan;176(1):1-6 [PMID: 8282683]
  74. Int J Syst Bacteriol. 1998 Apr;48 Pt 2:543-8 [PMID: 9731296]
  75. Mol Microbiol. 1996 Jul;21(2):233-45 [PMID: 8858579]
  76. Int J Syst Bacteriol. 1993 Jan;43(1):125-34 [PMID: 8427804]
  77. Eur J Biochem. 1993 Mar 1;212(2):377-85 [PMID: 8383046]
  78. Biochemistry. 1994 Aug 16;33(32):9731-40 [PMID: 8068652]
  79. Antonie Van Leeuwenhoek. 1994;66(1-3):23-36 [PMID: 7747934]
  80. Biochim Biophys Acta. 1994 Mar 23;1190(2):231-42 [PMID: 8142421]
  81. Trends Biochem Sci. 1991 Aug;16(8):310-4 [PMID: 1957353]
  82. J Biol Chem. 1997 Oct 24;272(43):27266-73 [PMID: 9341173]
  83. Mol Gen Genet. 1991 Mar;225(3):514-20 [PMID: 1850088]
  84. J Biol Chem. 1990 Jul 5;265(19):11185-92 [PMID: 2162835]
  85. Genes Cells. 1996 Aug;1(8):717-25 [PMID: 9077441]
  86. J Biol Chem. 1993 Sep 25;268(27):20211-7 [PMID: 8376381]
  87. J Bacteriol. 1997 Aug;179(16):5014-23 [PMID: 9260941]
  88. J Gen Microbiol. 1993 Dec;139(12):3205-14 [PMID: 8126439]
  89. Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616 [PMID: 9409151]
  90. Arch Biochem Biophys. 1992 Jul;296(1):40-8 [PMID: 1605643]
  91. Microbiology (Reading). 1997 Mar;143 ( Pt 3):793-801 [PMID: 9084163]
  92. J Bacteriol. 1988 May;170(5):2153-8 [PMID: 2834328]
  93. Eur J Biochem. 1992 Aug 15;208(1):31-40 [PMID: 1324835]
  94. Nat Struct Biol. 1995 Oct;2(10):842-6 [PMID: 7552705]
  95. Eur J Biochem. 1995 Apr 1;229(1):148-54 [PMID: 7744026]
  96. Biochem J. 1996 Jul 15;317 ( Pt 2):557-63 [PMID: 8713085]
  97. Eur J Biochem. 1989 Feb 15;179(3):621-8 [PMID: 2537726]
  98. Microbiol Mol Biol Rev. 1997 Sep;61(3):337-76 [PMID: 9293186]
  99. Plant Mol Biol. 1991 Apr;16(4):601-14 [PMID: 1868199]
  100. Biochim Biophys Acta. 1997 Jan 16;1318(1-2):202-16 [PMID: 9030265]
  101. Eur J Biochem. 1996 Dec 15;242(3):592-600 [PMID: 9022686]
  102. Eur J Biochem. 1994 Jan 15;219(1-2):481-90 [PMID: 7508388]
  103. J Bioenerg Biomembr. 1993 Apr;25(2):121-36 [PMID: 8389745]
  104. J Bacteriol. 1998 Jan;180(2):416-21 [PMID: 9440534]
  105. Mol Gen Genet. 1993 Apr;238(1-2):74-80 [PMID: 8479442]
  106. FEBS Lett. 1994 Mar 14;341(1):1-4 [PMID: 8137905]
  107. Biochim Biophys Acta. 1969;185(2):316-31 [PMID: 4980134]
  108. Eur J Biochem. 1993 Nov 15;218(1):49-57 [PMID: 8243476]
  109. Biochim Biophys Acta. 1996 Nov 12;1277(1-2):6-12 [PMID: 8950369]
  110. Microbiology (Reading). 1995 Oct;141 ( Pt 10):2543-51 [PMID: 7582014]
  111. Protein Sci. 1995 Aug;4(8):1654-7 [PMID: 8520493]
  112. J Bacteriol. 1994 May;176(9):2560-8 [PMID: 8169204]
  113. Annu Rev Microbiol. 1993;47:597-626 [PMID: 8257110]
  114. EMBO J. 1982;1(5):591-5 [PMID: 6234163]
  115. FEBS Lett. 1978 Sep 15;93(2):261-5 [PMID: 213309]
  116. Mol Microbiol. 1997 Jul;25(2):205-10 [PMID: 9282732]
  117. Mol Gen Genet. 1996 Nov 27;253(1-2):253-8 [PMID: 9003311]
  118. Biochim Biophys Acta. 1988 Sep 14;935(2):195-207 [PMID: 2843228]
  119. J Bacteriol. 1995 Apr;177(8):2064-73 [PMID: 7721699]
  120. Mol Microbiol. 1993 May;8(3):457-70 [PMID: 8392137]
  121. J Biol Chem. 1996 Jul 5;271(27):16263-7 [PMID: 8663075]
  122. Mol Microbiol. 1997 Jun;24(5):977-90 [PMID: 9220005]
  123. Eur J Biochem. 1995 May 15;230(1):359-63 [PMID: 7601123]
  124. J Bacteriol. 1985 Dec;164(3):1064-70 [PMID: 3905763]
  125. Gene. 1988;62(2):237-47 [PMID: 3259198]
  126. J Bacteriol. 1991 Nov;173(21):6948-61 [PMID: 1657871]
  127. Curr Opin Struct Biol. 1996 Aug;6(4):460-6 [PMID: 8794157]
  128. Mol Gen Genet. 1991 Feb;225(2):241-8 [PMID: 2005866]
  129. J Bacteriol. 1989 Jun;171(6):3288-97 [PMID: 2542222]
  130. J Bacteriol. 1996 Apr;178(7):1946-54 [PMID: 8606169]
  131. J Inorg Biochem. 1996 May 1;62(2):89-102 [PMID: 8729797]
  132. Mol Microbiol. 1996 Nov;22(3):393-404 [PMID: 8939424]
  133. Mol Microbiol. 1994 Jul;13(2):183-96 [PMID: 7984100]
  134. FEBS Lett. 1990 Feb 26;261(2):431-5 [PMID: 2155830]
  135. Biochem Soc Trans. 1991 Aug;19(3):608-12 [PMID: 1664390]
  136. Mol Microbiol. 1994 Nov;14(4):705-16 [PMID: 7891558]
  137. J Bacteriol. 1987 Dec;169(12):5648-52 [PMID: 2824441]
  138. Biochemistry. 1993 Jan 26;32(3):968-81 [PMID: 8422400]
  139. Cell. 1987 Jan 30;48(2):271-9 [PMID: 3802195]
  140. Biochim Biophys Acta. 1991 Jun 17;1058(2):256-60 [PMID: 1646632]
  141. Eur J Biochem. 1994 Nov 15;226(1):201-10 [PMID: 7957249]
  142. Mol Microbiol. 1995 Jan;15(2):319-31 [PMID: 7746153]
  143. J Bacteriol. 1991 Nov;173(21):6971-9 [PMID: 1657873]
  144. Annu Rev Biochem. 1994;63:675-716 [PMID: 7979252]
  145. Eur J Biochem. 1993 Dec 1;218(2):711-7 [PMID: 8269962]
  146. Antonie Van Leeuwenhoek. 1997 Feb;71(1-2):95-107 [PMID: 9049021]
  147. Antonie Van Leeuwenhoek. 1956;22(4):385-406 [PMID: 13395349]
  148. Eur J Biochem. 1991 Dec 18;202(3):1003-12 [PMID: 1765062]
  149. Mol Gen Genet. 1997 Feb 27;253(6):666-73 [PMID: 9079877]
  150. J Gen Microbiol. 1993 Aug;139(8):1767-72 [PMID: 8409920]
  151. Nucleic Acids Res. 1996 Dec 15;24(24):4918-23 [PMID: 9016661]
  152. J Bacteriol. 1986 Jun;166(3):812-7 [PMID: 3711024]
  153. Microbiology (Reading). 1996 Sep;142 ( Pt 9):2577-85 [PMID: 8828226]
  154. Biochem J. 1996 Jun 15;316 ( Pt 3):887-92 [PMID: 8670167]
  155. Eur J Biochem. 1989 Feb 15;179(3):683-92 [PMID: 2920732]
  156. Cell. 1995 May 5;81(3):369-77 [PMID: 7736589]
  157. Nature. 1997 May 22;387(6631):394-401 [PMID: 9163424]
  158. Arch Biochem Biophys. 1994 May 1;310(2):460-6 [PMID: 8179333]
  159. Int J Syst Bacteriol. 1990 Jul;40(3):292-6 [PMID: 2397197]
  160. FEBS Lett. 1992 Dec 21;314(3):308-14 [PMID: 1468562]
  161. Gene. 1997 Jun 19;192(2):251-9 [PMID: 9224898]
  162. Cell. 1993 Jun 4;73(5):857-71 [PMID: 8098993]
  163. FEMS Microbiol Rev. 1993 Jan;10(1-2):83-117 [PMID: 8431311]
  164. Eur J Biochem. 1995 Jun 15;230(3):860-71 [PMID: 7601147]
  165. J Bacteriol. 1997 Feb;179(4):1090-5 [PMID: 9023188]
  166. Microbiol Rev. 1987 Jun;51(2):221-71 [PMID: 2439888]
  167. J Bacteriol. 1995 Apr;177(8):1929-37 [PMID: 7721683]
  168. J Bacteriol. 1990 Feb;172(2):986-96 [PMID: 2153663]
  169. Mol Microbiol. 1990 Nov;4(11):1831-8 [PMID: 2136332]
  170. Biochim Biophys Acta. 1994 Aug 30;1187(2):121-4 [PMID: 8075104]
  171. J Bacteriol. 1997 Mar;179(5):1573-9 [PMID: 9045815]
  172. J Bioenerg Biomembr. 1995 Oct;27(5):499-512 [PMID: 8718455]
  173. J Biol Chem. 1985 Feb 25;260(4):2458-67 [PMID: 2982819]
  174. J Bacteriol. 1995 Jan;177(1):247-51 [PMID: 7798140]
  175. Eur J Biochem. 1986 Feb 3;154(3):569-79 [PMID: 3004982]
  176. Eur J Biochem. 1991 Nov 1;201(3):695-702 [PMID: 1935963]
  177. Microbiology (Reading). 1997 Feb;143 ( Pt 2):563-576 [PMID: 9043133]
  178. FEMS Microbiol Lett. 1994 Mar 15;117(1):103-6 [PMID: 8181704]
  179. Nature. 1975 Apr 10;254(5500):495-8 [PMID: 235742]
  180. Photosynth Res. 1993 Feb;35(2):117-33 [PMID: 24318679]
  181. J Bacteriol. 1990 May;172(5):2392-400 [PMID: 2158969]
  182. Mol Microbiol. 1998 Feb;27(4):853-69 [PMID: 9515710]
  183. J Biol Chem. 1997 Feb 28;272(9):5514-7 [PMID: 9038156]
  184. FEMS Microbiol Lett. 1996 Apr 1;137(2-3):169-74 [PMID: 8998981]
  185. Arch Microbiol. 1993;160(4):253-64 [PMID: 8239880]
  186. Nucleic Acids Res. 1983 Apr 25;11(8):2237-55 [PMID: 6344016]
  187. J Biol Chem. 1988 Feb 15;263(5):2316-23 [PMID: 3339013]
  188. Biochemistry. 1991 Jul 2;30(26):6422-8 [PMID: 1905152]
  189. FEBS Lett. 1980 May 5;113(2):279-84 [PMID: 6248362]
  190. Biochem J. 1991 Jan 15;273(Pt 2):423-7 [PMID: 1846742]
  191. J Biol Chem. 1986 Sep 15;261(26):12282-9 [PMID: 3017970]
  192. J Bacteriol. 1993 Apr;175(8):2304-13 [PMID: 8468291]
  193. J Bioenerg Biomembr. 1994 Dec;26(6):609-18 [PMID: 7721722]
  194. EMBO J. 1989 Dec 1;8(12):3571-9 [PMID: 2555169]
  195. Antonie Van Leeuwenhoek. 1992 Jan;61(1):1-33 [PMID: 1575465]
  196. Mol Microbiol. 1997 Mar;23(5):893-907 [PMID: 9076727]
  197. FEMS Microbiol Rev. 1993 Apr;10(3-4):347-50 [PMID: 8318264]
  198. J Bacteriol. 1996 Apr;178(7):1881-94 [PMID: 8606161]
  199. Protein Sci. 1993 May;2(5):739-52 [PMID: 8495197]
  200. J Bioenerg Biomembr. 1991 Apr;23(2):227-39 [PMID: 1646794]
  201. FEBS Lett. 1997 Mar 10;404(2-3):208-10 [PMID: 9119065]
  202. J Bacteriol. 1997 Mar;179(5):1734-47 [PMID: 9045836]
  203. J Bioenerg Biomembr. 1993 Apr;25(2):115-20 [PMID: 8389744]
  204. Res Microbiol. 1994 Jun-Aug;145(5-6):437-50 [PMID: 7855430]
  205. J Bacteriol. 1996 Feb;178(3):774-9 [PMID: 8550512]
  206. J Bacteriol. 1994 Oct;176(19):5919-28 [PMID: 7928952]
  207. Mol Microbiol. 1996 Jun;20(6):1165-78 [PMID: 8809769]
  208. J Bacteriol. 1992 Aug;174(16):5332-9 [PMID: 1644760]
  209. FEMS Microbiol Lett. 1997 Feb 15;147(2):209-13 [PMID: 9119195]
  210. Microbiology (Reading). 1997 Oct;143 ( Pt 10):3101-3110 [PMID: 9353915]
  211. Eur J Biochem. 1994 Feb 15;220(1):117-24 [PMID: 8119278]
  212. Mol Microbiol. 1997 Dec;26(5):927-37 [PMID: 9426130]
  213. Eur J Biochem. 1997 Apr 15;245(2):300-6 [PMID: 9151957]
  214. J Bacteriol. 1991 Jun;173(11):3271-2 [PMID: 2045357]
  215. Mol Microbiol. 1992 Nov;6(21):3171-86 [PMID: 1453956]
  216. Int J Syst Bacteriol. 1993 Apr;43(2):363-7 [PMID: 8494744]
  217. J Bacteriol. 1992 Jun;174(11):3707-14 [PMID: 1339423]
  218. FEMS Microbiol Lett. 1989 Nov;53(1-2):1-4 [PMID: 2612879]
  219. J Biol Chem. 1991 Apr 25;266(12):7676-81 [PMID: 1850416]
  220. Gene. 1992 Oct 12;120(1):125-6 [PMID: 1327970]
  221. J Biol Chem. 1994 Sep 16;269(37):23079-86 [PMID: 8083210]
  222. Antonie Van Leeuwenhoek. 1989 Nov;56(4):289-99 [PMID: 2619286]
  223. FEBS Lett. 1989 Mar 13;245(1-2):271-3 [PMID: 2538362]
  224. J Bacteriol. 1993 Oct;175(20):6392-402 [PMID: 8407816]
  225. Mol Microbiol. 1996 Jun;20(6):1247-60 [PMID: 8809776]
  226. J Bioenerg Biomembr. 1991 Apr;23(2):187-210 [PMID: 2050654]
  227. FEMS Microbiol Lett. 1993 Nov 1;113(3):321-6 [PMID: 8270198]
  228. J Inorg Biochem. 1985 Mar-Apr;23(3-4):183-6 [PMID: 2991456]
  229. Microbiol Rev. 1990 Jun;54(2):101-29 [PMID: 2163487]
  230. Antonie Van Leeuwenhoek. 1997 Oct;72(3):219-28 [PMID: 9403107]
  231. J Bacteriol. 1991 Aug;173(16):5173-80 [PMID: 1860826]
  232. Lett Appl Microbiol. 1997 Jul;25(1):63-9 [PMID: 9248083]
  233. Arch Microbiol. 1998 Apr;169(4):275-81 [PMID: 9531627]
  234. J Mol Biol. 1997 Jun 13;269(3):440-55 [PMID: 9199411]
  235. FEBS Lett. 1994 May 23;345(1):76-80 [PMID: 8194605]
  236. J Mol Biol. 1992 Jan 5;223(1):1-7 [PMID: 1731062]
  237. Mol Microbiol. 1995 Jan;15(2):307-18 [PMID: 7746152]
  238. J Biol Chem. 1994 Apr 15;269(15):11279-84 [PMID: 8157659]
  239. Mol Gen Genet. 1992 Jan;231(2):323-8 [PMID: 1736101]
  240. Mol Gen Genet. 1990 May;221(3):371-8 [PMID: 2381418]
  241. Biochem J. 1997 Feb 1;321 ( Pt 3):699-705 [PMID: 9032456]
  242. Arch Biochem Biophys. 1987 Feb 15;253(1):199-204 [PMID: 3813563]
  243. J Mol Biol. 1991 Oct 5;221(3):1027-43 [PMID: 1834851]
  244. Biochemistry. 1997 Aug 5;36(31):9446-52 [PMID: 9235989]
  245. Biochim Biophys Acta. 1996 Nov 12;1277(1-2):93-102 [PMID: 8950374]
  246. J Bacteriol. 1986 Nov;168(2):962-72 [PMID: 3023293]
  247. J Biol Chem. 1978 Jun 25;253(12):4086-9 [PMID: 207689]
  248. Int J Syst Bacteriol. 1999 Apr;49 Pt 2:645-51 [PMID: 10319488]
  249. Biochem J. 1996 Jul 1;317 ( Pt 1):305-11 [PMID: 8694780]
  250. Mol Microbiol. 1993 Jul;9(1):211-8 [PMID: 8412666]
  251. FEBS Lett. 1989 Jun 5;249(2):163-7 [PMID: 2544445]
  252. Science. 1994 Apr 1;264(5155):86-90 [PMID: 8140419]
  253. Biochim Biophys Acta. 1996 Sep 11;1308(3):189-92 [PMID: 8809108]
  254. Mol Gen Genet. 1997 Aug;255(5):487-94 [PMID: 9294033]
  255. EMBO J. 1997 Mar 17;16(6):1181-8 [PMID: 9135135]
  256. J Bacteriol. 1987 Feb;169(2):742-50 [PMID: 3027044]
  257. Microbiology (Reading). 1995 Jun;141 ( Pt 6):1469-1477 [PMID: 7545513]
  258. FEBS Lett. 1990 Jun 4;265(1-2):85-7 [PMID: 2365057]
  259. Mol Microbiol. 1989 May;3(5):653-61 [PMID: 2548064]
  260. J Bacteriol. 1990 Oct;172(10):5980-90 [PMID: 2211521]
  261. Mol Microbiol. 1992 Jun;6(11):1565-73 [PMID: 1320728]
  262. Mol Gen Genet. 1989 Jun;217(2-3):332-40 [PMID: 2549377]
  263. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2499-503 [PMID: 7708673]
  264. EMBO J. 1994 Jun 1;13(11):2516-25 [PMID: 8013452]
  265. J Bacteriol. 1987 Sep;169(9):3969-75 [PMID: 3114231]
  266. J Bacteriol. 1986 May;166(2):446-52 [PMID: 3009400]
  267. J Biol Chem. 1986 Apr 15;261(11):4895-901 [PMID: 3007478]
  268. J Bacteriol. 1991 Nov;173(22):7340-4 [PMID: 1938925]
  269. J Bacteriol. 1993 Dec;175(24):7869-74 [PMID: 8253676]
  270. J Bacteriol. 1985 Aug;163(2):709-15 [PMID: 2991202]
  271. J Biol Chem. 1996 Oct 4;271(40):24382-8 [PMID: 8798693]
  272. J Bacteriol. 1997 Jan;179(2):487-95 [PMID: 8990302]
  273. Mol Microbiol. 1990 Jul;4(7):1181-92 [PMID: 2172694]
  274. J Biol Chem. 1985 Nov 25;260(27):14626-9 [PMID: 2997215]
  275. Appl Environ Microbiol. 1993 Jan;59(1):250-4 [PMID: 8439151]
  276. Nucleic Acids Res. 1991 Dec 25;19(24):6705-12 [PMID: 1762901]
  277. J Biol Chem. 1987 Oct 5;262(28):13805-11 [PMID: 2820981]
  278. Arch Microbiol. 1978 Jul;118(1):21-6 [PMID: 211973]
  279. Biochim Biophys Acta. 1977 Oct 5;463(2):129-53 [PMID: 20140]
  280. Biochim Biophys Acta. 1992 Jul 17;1101(2):195-7 [PMID: 1321668]
  281. Biochemistry. 1994 Mar 15;33(10):3113-9 [PMID: 8130226]
  282. Eur J Biochem. 1995 Jul 1;231(1):259-65 [PMID: 7628479]
  283. FEBS Lett. 1990 Nov 26;275(1-2):217-20 [PMID: 2261991]
  284. Int J Syst Bacteriol. 1998 Apr;48 Pt 2:529-36 [PMID: 9731294]
  285. J Bacteriol. 1985 Apr;162(1):430-3 [PMID: 2984184]
  286. J Bacteriol. 1994 Aug;176(16):5171-6 [PMID: 8051036]
  287. J Gen Microbiol. 1989 Sep;135(9):2445-51 [PMID: 2516869]
  288. J Bacteriol. 1994 Jul;176(13):4052-65 [PMID: 8021187]
  289. FEMS Microbiol Lett. 1995 Nov 1;133(1-2):85-90 [PMID: 8566717]
  290. Arch Microbiol. 1997 Sep;168(3):225-36 [PMID: 9382702]
  291. J Bacteriol. 1989 Nov;171(11):5850-9 [PMID: 2808300]
  292. Proteins. 1992 Oct;14(2):288-99 [PMID: 1409575]
  293. J Biol Chem. 1986 Jul 5;261(19):8577-80 [PMID: 3013855]

MeSH Term

Base Sequence
Electron Transport
Energy Metabolism
Gene Expression Regulation, Bacterial
Genes, Bacterial
Molecular Sequence Data
Oxidation-Reduction
Oxygen Consumption
Paracoccus

Word Cloud

Created with Highcharts 10.0.0respiratoryParacoccusdenitrificansflexibilityprocessesversutusPmanycomponentseggenususeoxideelectronproteinsconstitutiveRNApolymerasegenesnearrelativeformerlyknownThiobacilllusattractingincreasingattentionaerobicsystemlongregardedmodelmitochondrioncytochromeaa3oxidasecommonMembersexhibitgreatrangemetabolicparticularlyrespectinvolvingrespirationProminentexamplesdenitrificationnitratenitritenitrousnitricalternativeacceptorsoxygenabilityC1compoundsmethanolmethylaminedonorschainsrequiredunderlyingcomplexregulatorysystemsregulateexpressionbeginningunraveleduncertaintywhethertranscriptionmemberalpha-3Proteobacteriainvolvesconventionalsigma70-typeespeciallysincecanonical-35-10DNAbindingsitesreadilyidentifiedreviewargueparticularencodingmaycontrolsigma70closelyrelatedRhodobactercapsulatusmainfocusstructureregulationcodingproductsinvolvedcurrentstateknowledgepathwaysbiogenesisalsoreviewedMoleculargeneticsParacoccus:metabolicallyversatilebacteriabioenergetic

Similar Articles

Cited By