Cloning, characterization, and expression of a novel Zn2+-binding FYVE finger-containing phosphoinositide kinase in insulin-sensitive cells.

A Shisheva, D Sbrissa, O Ikonomov
Author Information
  1. A Shisheva: Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.

Abstract

Signaling by phosphorylated species of phosphatidylinositol (PI) appears to regulate diverse responses in eukaryotic cells. A differential display screen for fat- and muscle-specific transcripts led to identification and cloning of the full-length cDNA of a novel mammalian 2,052-amino-acid protein (p235) from a mouse adipocyte cDNA library. Analysis of the deduced amino acid sequence revealed that p235 contains an N-terminal zinc-binding FYVE finger, a chaperonin-like region in the middle of the molecule, and a consensus for phosphoinositide 5-kinases at the C terminus. p235 mRNA appears as a 9-kb transcript, enriched in insulin-sensitive cells and tissues, likely transcribed from a single-copy gene in at least two close-in-size splice variants. Specific antibodies against mouse p235 were raised, and both the endogenously and heterologously expressed proteins were biochemically detected in 3T3-L1 adipocytes and transfected COS cells, respectively. Immunofluorescence microscopy analysis of endogenous p235 localization in 3T3-L1 adipocytes with affinity-purified anti-p235 antibodies documented a punctate peripheral pattern. In COS cells, the expressed p235 N-terminal but not the C-terminal region displayed a vesicular pattern similar to that in 3T3-L1 adipocytes that became diffuse upon Zn2++ chelation or FYVE finger truncation. A recombinant protein comprising the N-terminal but not the C-terminal region of the molecule was found to bind 2.2 mole equivalents of Zn2++. Determination of the lipid kinase activity in the p235 immunoprecipitates derived from 3T3-L1 adipocytes or from COS cells transiently expressing p235 revealed that p235 displayed unique preferences for PI substrate over already phosphorylated PI. In conclusion, the mouse p235 protein determines an important novel class of phosphoinositide kinases that seems to be targeted to specific intracellular loci by a Zn-dependent mechanism.

Associated Data

GENBANK | AF102777

References

  1. Curr Opin Cell Biol. 1996 Apr;8(2):153-8 [PMID: 8791418]
  2. Mol Gen Genet. 1994 Mar;242(6):631-40 [PMID: 8152413]
  3. Curr Opin Cell Biol. 1998 Apr;10(2):254-61 [PMID: 9561850]
  4. Biochem J. 1996 Jan 15;313 ( Pt 2):381-9 [PMID: 8573069]
  5. J Biol Chem. 1997 Feb 28;272(9):5861-70 [PMID: 9038203]
  6. DNA Res. 1997 Apr 28;4(2):141-50 [PMID: 9205841]
  7. J Biol Chem. 1994 Sep 30;269(39):23865-8 [PMID: 7929030]
  8. Curr Biol. 1995 Mar 1;5(3):262-4 [PMID: 7780736]
  9. Mol Cell Biol. 1999 Feb;19(2):1081-91 [PMID: 9891043]
  10. J Biol Chem. 1985 Mar 10;260(5):2719-27 [PMID: 3919006]
  11. Annu Rev Nutr. 1995;15:441-71 [PMID: 8527229]
  12. Science. 1991 May 24;252(5009):1162-4 [PMID: 2031185]
  13. J Biol Chem. 1993 Feb 25;268(6):4391-8 [PMID: 8382701]
  14. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7326-30 [PMID: 9207090]
  15. Nucleic Acids Res. 1987 Oct 26;15(20):8125-48 [PMID: 3313277]
  16. Biochemistry. 1997 Jun 3;36(22):6564-70 [PMID: 9184135]
  17. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  18. Nature. 1998 Jul 30;394(6692):433-4 [PMID: 9697765]
  19. J Biol Chem. 1996 Dec 20;271(51):32937-43 [PMID: 8955136]
  20. Biochemistry. 1995 Jul 18;34(28):9103-10 [PMID: 7619808]
  21. Anal Biochem. 1983 Jul 1;132(1):6-13 [PMID: 6312838]
  22. Methods Enzymol. 1991;200:423-30 [PMID: 1956328]
  23. Biotechniques. 1998 Mar;24(3):349-50, 352, 354 [PMID: 9526637]
  24. J Biol Chem. 1983 Apr 25;258(8):4876-82 [PMID: 6601105]
  25. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1411-5 [PMID: 2154747]
  26. Mol Biol Cell. 1995 May;6(5):525-39 [PMID: 7663021]
  27. Nature. 1997 Jun 12;387(6634):673-6 [PMID: 9192891]
  28. Trends Biochem Sci. 1998 Feb;23(2):43-5 [PMID: 9538685]
  29. Adv Enzyme Regul. 1996;36:115-40 [PMID: 8869744]
  30. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8452-6 [PMID: 3490667]
  31. Biochem J. 1995 Aug 1;309 ( Pt 3):715-9 [PMID: 7639683]
  32. J Biol Chem. 1995 Jun 2;270(22):13503-11 [PMID: 7768953]
  33. J Biol Chem. 1994 Apr 15;269(15):11547-54 [PMID: 8157686]
  34. Trends Biochem Sci. 1998 Jan;23(1):1-4 [PMID: 9478126]
  35. Nature. 1997 Feb 27;385(6619):826-9 [PMID: 9039916]
  36. Nature. 1991 Jan 10;349(6305):117-27 [PMID: 1898771]
  37. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9111-5 [PMID: 7916460]
  38. Cell. 1995 Jun 2;81(5):659-62 [PMID: 7774006]
  39. J Biol Chem. 1997 Jul 11;272(28):17756-61 [PMID: 9211928]
  40. Mol Cell Biol. 1994 May;14(5):3459-68 [PMID: 7513052]
  41. J Biol Chem. 1992 Jan 5;267(1):618-23 [PMID: 1730622]
  42. Bioessays. 1994 Aug;16(8):565-76 [PMID: 8086005]
  43. Nature. 1997 Nov 13;390(6656):192-6 [PMID: 9367159]
  44. Curr Opin Cell Biol. 1996 Aug;8(4):534-41 [PMID: 8791444]
  45. Biotechniques. 1996 Jun;20(6):1030-4, 1036-8, 1040-2 [PMID: 8780874]
  46. J Cell Biol. 1995 Nov;131(3):603-17 [PMID: 7593183]
  47. Biochem Soc Trans. 1997 Aug;25(3):981-8 [PMID: 9388586]
  48. Nature. 1997 Nov 13;390(6656):187-92 [PMID: 9367158]
  49. Diabetes. 1992 Aug;41(8):982-8 [PMID: 1628774]
  50. Nature. 1998 Jul 30;394(6692):432-3 [PMID: 9697764]
  51. J Biol Chem. 1996 Sep 27;271(39):24048-54 [PMID: 8798641]
  52. Eur J Cell Biol. 1995 Oct;68(2):143-58 [PMID: 8575461]
  53. J Biol Chem. 1994 Nov 18;269(46):28878-84 [PMID: 7961848]
  54. J Biol Chem. 1998 Apr 10;273(15):8741-8 [PMID: 9535851]
  55. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  56. J Biol Chem. 1998 Jul 17;273(29):18040-6 [PMID: 9660759]
  57. Biochem J. 1997 May 1;323 ( Pt 3):597-601 [PMID: 9169590]
  58. Mol Cell Biol. 1995 Nov;15(11):6213-21 [PMID: 7565774]
  59. Mol Cell. 1998 Jul;2(1):157-62 [PMID: 9702203]
  60. J Biol Chem. 1995 Feb 17;270(7):2881-4 [PMID: 7852364]

MeSH Term

3T3 Cells
Alternative Splicing
Amino Acid Sequence
Animals
Base Sequence
Blotting, Southern
CHO Cells
COS Cells
Cell Line
Cloning, Molecular
Cricetinae
DNA, Complementary
Epitopes
Gene Expression
HeLa Cells
Humans
Insulin
Mice
Molecular Sequence Data
Phosphatidylinositol 3-Kinases
Phosphotransferases (Alcohol Group Acceptor)
Rats
Sequence Analysis, DNA
Sequence Homology, Amino Acid
Zinc
Zinc Fingers

Chemicals

DNA, Complementary
Epitopes
Insulin
Phosphatidylinositol 3-Kinases
Phosphotransferases (Alcohol Group Acceptor)
PIKFYVE protein, human
Pikfyve protein, mouse
Zinc

Word Cloud

Created with Highcharts 10.0.0p235cells3T3-L1adipocytesPInovel2proteinmouseN-terminalFYVEregionphosphoinositideCOSphosphorylatedappearscDNArevealedfingermoleculeinsulin-sensitiveantibodiesexpressedpatternC-terminaldisplayedZn2+kinaseSignalingspeciesphosphatidylinositolregulatediverseresponseseukaryoticdifferentialdisplayscreenfat-muscle-specifictranscriptsledidentificationcloningfull-lengthmammalian052-amino-acidadipocytelibraryAnalysisdeducedaminoacidsequencecontainszinc-bindingchaperonin-likemiddleconsensus5-kinasesCterminusmRNA9-kbtranscriptenrichedtissueslikelytranscribedsingle-copygeneleasttwoclose-in-sizesplicevariantsSpecificraisedendogenouslyheterologouslyproteinsbiochemicallydetectedtransfectedrespectivelyImmunofluorescencemicroscopyanalysisendogenouslocalizationaffinity-purifiedanti-p235documentedpunctateperipheralvesicularsimilarbecamediffuseuponchelationtruncationrecombinantcomprisingfoundbindmoleequivalentsDeterminationlipidactivityimmunoprecipitatesderivedtransientlyexpressinguniquepreferencessubstratealreadyconclusiondeterminesimportantclasskinasesseemstargetedspecificintracellularlociZn-dependentmechanismCloningcharacterizationexpressionZn2+-bindingfinger-containing

Similar Articles

Cited By