Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion.

A E Jeukendrup, A Raben, A Gijsen, J H Stegen, F Brouns, W H Saris, A J Wagenmakers
Author Information
  1. A E Jeukendrup: Nutrition Research Centre, Department of Human Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands. A.E.Jeukendrup@bham.ac.uk

Abstract

1. The objectives of this study were (1) to investigate whether glucose ingestion during prolonged exercise reduces whole body muscle glycogen oxidation, (2) to determine the extent to which glucose disappearing from the plasma is oxidized during exercise with and without carbohydrate ingestion and (3) to obtain an estimate of gluconeogenesis. 2. After an overnight fast, six well-trained cyclists exercised on three occasions for 120 min on a bicycle ergometer at 50 % maximum velocity of O2 uptake and ingested either water (Fast), or a 4 % glucose solution (Lo-Glu) or a 22 % glucose solution (Hi-Glu) during exercise. 3. Dual tracer infusion of [U-13C]-glucose and [6,6-2H2]-glucose was given to measure the rate of appearance (Ra) of glucose, muscle glycogen oxidation, glucose carbon recycling, metabolic clearance rate (MCR) and non-oxidative disposal of glucose. 4. Glucose ingestion markedly increased total Ra especially with Hi-Glu. After 120 min Ra and rate of disappearance (Rd) of glucose were 51-52 micromol kg-1 min-1 during Fast, 73-74 micromol kg-1 min-1 during Lo-Glu and 117-119 micromol kg-1 min-1 during Hi-Glu. The percentage of Rd oxidized was between 96 and 100 % in all trials. 5. Glycogen oxidation during exercise was not reduced by glucose ingestion. The vast majority of glucose disappearing from the plasma is oxidized and MCR increased markedly with glucose ingestion. Glucose carbon recycling was minimal suggesting that gluconeogenesis in these conditions is negligible.

References

  1. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):230-5 [PMID: 6350247]
  2. J Appl Physiol (1985). 1997 Mar;82(3):835-40 [PMID: 9074971]
  3. Med Sci Sports Exerc. 1984 Jun;16(3):219-22 [PMID: 6748917]
  4. Clin Physiol. 1984 Dec;4(6):483-94 [PMID: 6542834]
  5. Med Sci Sports Exerc. 1985 Aug;17(4):472-6 [PMID: 4033404]
  6. Int J Sports Med. 1985 Aug;6(4):197-201 [PMID: 4044103]
  7. J Appl Physiol (1985). 1986 Jul;61(1):165-72 [PMID: 3525502]
  8. Med Sci Sports Exerc. 1987 Feb;19(1):37-40 [PMID: 3821453]
  9. Med Sci Sports Exerc. 1987 Dec;19(6):597-604 [PMID: 3431377]
  10. J Appl Physiol (1985). 1987 Dec;63(6):2388-95 [PMID: 3325488]
  11. J Appl Physiol (1985). 1988 Oct;65(4):1553-5 [PMID: 3182519]
  12. J Appl Physiol (1985). 1988 Oct;65(4):1703-9 [PMID: 3053587]
  13. Int J Sports Med. 1990 Jun;11(3):238-43 [PMID: 2373584]
  14. Sports Med. 1991 Feb;11(2):102-24 [PMID: 2017604]
  15. J Appl Physiol (1985). 1991 Feb;70(2):882-8 [PMID: 2022581]
  16. Can J Sport Sci. 1991 Mar;16(1):23-9 [PMID: 1645211]
  17. J Appl Physiol (1985). 1992 Feb;72(2):468-75 [PMID: 1559921]
  18. Sports Med. 1992 Jul;14(1):27-42 [PMID: 1641541]
  19. J Appl Physiol (1985). 1992 Nov;73(5):1873-80 [PMID: 1474063]
  20. Am J Physiol. 1992 Dec;263(6 Pt 1):E1063-9 [PMID: 1476178]
  21. Int J Sport Nutr. 1991 Sep;1(3):279-88 [PMID: 1845002]
  22. J Appl Physiol (1985). 1993 Dec;75(6):2774-80 [PMID: 8125902]
  23. J Appl Physiol (1985). 1994 Jan;76(1):26-32 [PMID: 8175515]
  24. Eur J Appl Physiol Occup Physiol. 1994;68(5):381-9 [PMID: 8076616]
  25. J Appl Physiol (1985). 1994 Jun;76(6):2364-72 [PMID: 7928859]
  26. J Clin Invest. 1995 Jan;95(1):278-84 [PMID: 7814626]
  27. J Appl Physiol (1985). 1994 Sep;77(3):1537-41 [PMID: 7836162]
  28. Pflugers Arch. 1995 Oct;430(6):964-70 [PMID: 8594549]
  29. J Appl Physiol (1985). 1995 Sep;79(3):756-62 [PMID: 8567514]
  30. J Physiol. 1995 Nov 15;489 ( Pt 1):243-50 [PMID: 8583408]
  31. Am J Physiol. 1996 Apr;270(4 Pt 1):E733-8 [PMID: 8928782]
  32. J Appl Physiol (1985). 1996 Mar;80(3):949-54 [PMID: 8964761]
  33. Metabolism. 1996 Jul;45(7):915-21 [PMID: 8692031]
  34. J Appl Physiol (1985). 1996 Aug;81(2):801-9 [PMID: 8872649]
  35. Int J Sports Med. 1997 Feb;18(2):125-9 [PMID: 9081269]
  36. J Appl Physiol (1985). 1997 Apr;82(4):1360-9 [PMID: 9104876]
  37. Med Sci Sports Exerc. 1997 May;29(5):620-7 [PMID: 9140898]
  38. Am J Physiol. 1997 Aug;273(2 Pt 1):E268-75 [PMID: 9277379]
  39. Am J Physiol. 1997 Oct;273(4 Pt 1):E768-75 [PMID: 9357807]
  40. Sports Med. 1998 Jan;25(1):7-23 [PMID: 9458524]
  41. J Physiol. 1998 Nov 15;513 ( Pt 1):215-23 [PMID: 9782171]
  42. Ann N Y Acad Sci. 1959 Sep 25;82:420-30 [PMID: 13833973]
  43. J Appl Physiol (1985). 1996 Feb;80(2):605-15 [PMID: 8929605]
  44. J Appl Physiol (1985). 1996 Nov;81(5):1952-7 [PMID: 8941515]
  45. Am J Physiol. 1983 Nov;245(5 Pt 1):E476-82 [PMID: 6638174]

MeSH Term

Administration, Oral
Adult
Blood Glucose
Carbohydrate Metabolism
Carbon Dioxide
Exercise
Fatty Acids, Nonesterified
Glucose
Glycerol
Glycogen
Humans
Insulin
Kinetics
Lactic Acid
Lipid Metabolism
Muscles
Oxidation-Reduction
Physical Education and Training
Respiration
Time Factors

Chemicals

Blood Glucose
Fatty Acids, Nonesterified
Insulin
Carbon Dioxide
Lactic Acid
Glycogen
Glucose
Glycerol

Word Cloud

Created with Highcharts 10.0.0glucoseingestionexercise%oxidationoxidizedHi-GlurateRaGlucosemicromolkg-1min-11prolongedmuscleglycogen2disappearingplasma3gluconeogenesis120minFast4solutionLo-GlucarbonrecyclingMCRmarkedlyincreasedRdobjectivesstudyinvestigatewhetherreduceswholebodydetermineextentwithoutcarbohydrateobtainestimateovernightfastsixwell-trainedcyclistsexercisedthreeoccasionsbicycleergometer50maximumvelocityO2uptakeingestedeitherwater22Dualtracerinfusion[U-13C]-glucose[66-2H2]-glucosegivenmeasureappearancemetabolicclearancenon-oxidativedisposaltotalespeciallydisappearance51-5273-74117-119percentage96100trials5Glycogenreducedvastmajorityminimalsuggestingconditionsnegligiblekineticshighlytrainedhumansubjects:effect

Similar Articles

Cited By (45)