Expression of neurotrophins BDNF and NT-3, and their receptors in rat brain after administration of antipsychotic and psychotrophic agents.

A M Lindén, J Väisänen, M Lakso, H Nawa, G Wong, E Castrén
Author Information
  1. A M Lindén: A. I. Virtanen Institute, University of Kuopio, Finland.

Abstract

We have investigated the potential role of neurotrophic factors in antipsychotic drug action by examining the effects of antipsychotic and psychotropic treatments on the mRNA expression of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and their receptors, trkB and trkC, respectively, in rat brain. Neither acute nor chronic clozapine treatment significantly affected the expression of these mRNAs in any brain area investigated, except for a decrease in trkB expression in the granule cells of the olfactory bulb. We then examined the effects of the psychotropic agent MK-801. MK-801 (5 mg/kg; 4 h) significantly increased BDNF mRNA in the entorhinal cortex, but did not influence NT-3, trkB, or trkC expression in any brain area except for the olfactory bulb. The induction of BDNF mRNA by MK-801 was attenuated by pre-treatment (1 h prior to MK-801 administration) with the antipsychotics, clozapine (25 mg/kg) and haloperidol (2 mg/kg), but not with the antidepressant desipramine (15 mg/kg). Finally, we confirmed that the effects of MK-801 on BDNF mRNA were reflected in the respective changes in BDNF protein levels: MK-801 significantly increased anti-BDNF reactivity in the entorhinal cortex (126 +/- 7% of control) while concomitantly decreasing in the hippocampus (71 +/- 2% of control). These data do not support the hypothesis that neurotrophins play an important role in antipsychotic drug action, but rather suggest that induction of BDNF in the entorhinal cortex may play a significant role in the psychotropic action of MK-801.

References

  1. Neuropharmacology. 1999 Jan;38(1):121-8 [PMID: 10193903]
  2. J Neurosci. 1995 Mar;15(3 Pt 2):2453-61 [PMID: 7891180]
  3. Clin Neurosci. 1995;3(2):89-97 [PMID: 7583624]
  4. Neuron. 1991 Jun;6(6):937-48 [PMID: 2054188]
  5. Neuropharmacology. 1999 Jul;38(7):1075-82 [PMID: 10428426]
  6. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10037-41 [PMID: 1658793]
  7. Nature. 1995 Nov 9;378(6553):176-9 [PMID: 7477318]
  8. Brain Res. 1997 Aug 8;765(1):149-58 [PMID: 9310406]
  9. J Neurobiol. 1994 Nov;25(11):1362-72 [PMID: 7852991]
  10. Annu Rev Neurosci. 1996;19:289-317 [PMID: 8833445]
  11. Ann Neurol. 1991 Dec;30(6):801-9 [PMID: 1838680]
  12. J Mol Neurosci. 1998 Oct;11(2):121-6 [PMID: 10096038]
  13. Science. 1995 Oct 27;270(5236):593-8 [PMID: 7570017]
  14. Curr Opin Neurobiol. 1998 Feb;8(1):157-61 [PMID: 9568403]
  15. Exp Neurol. 1993 Aug;122(2):244-52 [PMID: 8405262]
  16. Eur J Pharmacol. 1999 Jun 30;375(1-3):31-40 [PMID: 10443562]
  17. Neuroreport. 1993 Feb;4(2):183-6 [PMID: 8453057]
  18. J Neurosci Res. 1996 Jul 1;45(1):13-27 [PMID: 8811509]
  19. Brain Res Dev Brain Res. 1993 Mar 19;72(1):119-31 [PMID: 8453762]
  20. Neuron. 1990 Oct;5(4):511-26 [PMID: 2206535]
  21. Annu Rev Pharmacol Toxicol. 1990;30:707-50 [PMID: 2160793]
  22. J Mol Neurosci. 1996 Summer;7(2):147-57 [PMID: 8873898]
  23. Curr Opin Neurobiol. 1997 Apr;7(2):285-9 [PMID: 9142763]
  24. Neuropsychopharmacology. 1999 Jul;21(1):137-46 [PMID: 10379528]
  25. Neuroscience. 1996 Jul;73(2):531-40 [PMID: 8783268]
  26. Trends Pharmacol Sci. 1999 Feb;20(2):59-61 [PMID: 10101965]
  27. Neuron. 1997 Nov;19(5):967-79 [PMID: 9390512]
  28. J Neurosci. 1997 Apr 1;17(7):2499-511 [PMID: 9065510]
  29. Biol Psychiatry. 1993 Jul 1-15;34(1-2):119-21 [PMID: 8373932]
  30. Am J Psychiatry. 1991 Oct;148(10):1301-8 [PMID: 1654746]
  31. Pharmacol Biochem Behav. 1997 Jan;56(1):131-7 [PMID: 8981620]
  32. Science. 1990 Oct 12;250(4978):290-4 [PMID: 1688328]
  33. Annu Rev Neurosci. 1999;22:295-318 [PMID: 10202541]
  34. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14182-7 [PMID: 8943081]
  35. J Neurosci. 1995 Nov;15(11):7539-47 [PMID: 7472505]
  36. J Pharmacol Exp Ther. 1997 Feb;280(2):561-9 [PMID: 9023264]
  37. J Pharmacol Exp Ther. 1996 Jun;277(3):1541-9 [PMID: 8667221]
  38. Science. 1989 Jun 16;244(4910):1360-2 [PMID: 2660263]
  39. FEBS Lett. 1992 Nov 23;313(2):138-42 [PMID: 1358675]
  40. Eur J Neurosci. 1993 Jun 1;5(6):605-13 [PMID: 8261135]
  41. Psychopharmacology (Berl). 1996 Mar;124(1-2):2-34 [PMID: 8935797]
  42. Eur J Neurosci. 1995 Jul 1;7(7):1527-35 [PMID: 7551179]
  43. Schizophr Bull. 1993;19(2):431-45 [PMID: 8322039]
  44. EMBO J. 1990 Nov;9(11):3545-50 [PMID: 2170117]
  45. Neuropsychopharmacology. 1995 Dec;13(4):335-45 [PMID: 8747758]
  46. Brain Res Mol Brain Res. 1997 Jul;47(1-2):331-8 [PMID: 9221932]

MeSH Term

Animals
Antipsychotic Agents
Brain
Brain-Derived Neurotrophic Factor
Clozapine
Dizocilpine Maleate
Entorhinal Cortex
Gene Expression Regulation
Hippocampus
Male
Neurotrophin 3
Psychotropic Drugs
RNA, Messenger
Rats
Rats, Wistar
Receptor, trkB
Receptor, trkC
Transcription, Genetic

Chemicals

Antipsychotic Agents
Brain-Derived Neurotrophic Factor
Neurotrophin 3
Psychotropic Drugs
RNA, Messenger
Dizocilpine Maleate
Receptor, trkB
Receptor, trkC
Clozapine

Word Cloud

Created with Highcharts 10.0.0BDNFMK-801antipsychoticmRNAexpressionbrainmg/kgroleactioneffectspsychotropicNT-3trkBsignificantlyentorhinalcortexinvestigatedneurotrophicdrugreceptorstrkCratclozapineareaexceptolfactorybulbhincreasedinductionadministration+/-controlneurotrophinsplaypotentialfactorsexaminingtreatmentsbrain-derivedfactorneurotrophin-3respectivelyNeitheracutechronictreatmentaffectedmRNAsdecreasegranulecellsexaminedagent54influenceattenuatedpre-treatment1priorantipsychotics25haloperidol2antidepressantdesipramine15Finallyconfirmedreflectedrespectivechangesproteinlevels:anti-BDNFreactivity1267%concomitantlydecreasinghippocampus712%datasupporthypothesisimportantrathersuggestmaysignificantExpressionpsychotrophicagents

Similar Articles

Cited By