Small GTPase RhoG is a key regulator for neurite outgrowth in PC12 cells.

H Katoh, H Yasui, Y Yamaguchi, J Aoki, H Fujita, K Mori, M Negishi
Author Information
  1. H Katoh: Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

Abstract

The Rho family of small GTPases has been implicated in cytoskeletal reorganization and subsequent morphological changes in various cell types. Among them, Rac and Cdc42 have been shown to be involved in neurite outgrowth in neuronal cells. In this study, we examined the role of RhoG, another member of Rho family GTPases, in nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Expression of wild-type RhoG in PC12 cells induced neurite outgrowth in the absence of NGF, and the morphology of wild-type RhoG-expressing cells was similar to that of NGF-differentiated cells. Constitutively active RhoG-transfected cells extended short neurites but developed large lamellipodial or filopodial structures at the tips of neurites. RhoG-induced neurite outgrowth was inhibited by coexpression with dominant-negative Rac1 or Cdc42. In addition, expression of constitutively active RhoG elevated endogenous Rac1 and Cdc42 activities. We also found that the NGF-induced neurite outgrowth was enhanced by expression of wild-type RhoG whereas expression of dominant-negative RhoG suppressed the neurite outgrowth. Furthermore, constitutively active Ras-induced neurite outgrowth was also suppressed by dominant-negative RhoG. Taken together, these results suggest that RhoG is a key regulator in NGF-induced neurite outgrowth, acting downstream of Ras and upstream of Rac1 and Cdc42 in PC12 cells.

References

  1. J Cell Biol. 1999 Nov 29;147(5):1009-22 [PMID: 10579721]
  2. J Biol Chem. 1999 May 7;274(19):13198-204 [PMID: 10224076]
  3. J Cell Sci. 2000 Feb;113 ( Pt 4):729-39 [PMID: 10652265]
  4. Mol Cell Biol. 2000 Mar;20(5):1461-77 [PMID: 10669724]
  5. Curr Opin Neurobiol. 2000 Feb;10(1):80-7 [PMID: 10679439]
  6. J Biol Chem. 1999 Jul 9;274(28):19901-5 [PMID: 10391936]
  7. Annu Rev Biochem. 1999;68:459-86 [PMID: 10872457]
  8. Cell. 1985 Oct;42(3):841-8 [PMID: 2996779]
  9. Nature. 1985 Nov 7-13;318(6041):73-5 [PMID: 4058592]
  10. EMBO J. 1989 Aug;8(8):2283-90 [PMID: 2477241]
  11. Mol Cell Biol. 1990 Oct;10(10):5324-32 [PMID: 2118994]
  12. Gene. 1990 Jul 16;91(2):185-91 [PMID: 2145197]
  13. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9853-7 [PMID: 2124704]
  14. Gene. 1991 Jun 15;102(1):67-70 [PMID: 1864511]
  15. Cell. 1992 Mar 20;68(6):1031-40 [PMID: 1312392]
  16. Cell. 1992 Mar 20;68(6):1041-50 [PMID: 1312393]
  17. Mol Cell Biol. 1992 Jul;12(7):3138-48 [PMID: 1620121]
  18. Cell. 1992 Aug 7;70(3):389-99 [PMID: 1643657]
  19. Cell. 1992 Aug 7;70(3):401-10 [PMID: 1643658]
  20. Nature. 1994 Jan 6;367(6458):40-6 [PMID: 8107774]
  21. Cell. 1994 Jun 17;77(6):841-52 [PMID: 7911739]
  22. Genes Dev. 1994 Aug 1;8(15):1787-802 [PMID: 7958857]
  23. J Neurobiol. 1994 Nov;25(11):1404-17 [PMID: 7852994]
  24. Cell. 1995 Apr 7;81(1):53-62 [PMID: 7536630]
  25. Ann Hum Genet. 1995 Jan;59(Pt 1):25-37 [PMID: 7762982]
  26. Cell. 1995 Oct 20;83(2):161-9 [PMID: 7585933]
  27. Cell. 1995 Oct 20;83(2):171-6 [PMID: 7585934]
  28. Nature. 1996 Feb 29;379(6568):837-40 [PMID: 8587609]
  29. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5466-71 [PMID: 8643598]
  30. Oncogene. 1996 Jul 18;13(2):363-71 [PMID: 8710375]
  31. Mol Cell Biol. 1997 Mar;17(3):1201-11 [PMID: 9032247]
  32. J Neurosci Res. 1997 Feb 1;47(3):348-60 [PMID: 9039657]
  33. J Cell Sci. 1997 Mar;110 ( Pt 5):635-41 [PMID: 9092945]
  34. J Cell Biol. 1997 Jun 30;137(7):1603-13 [PMID: 9199174]
  35. Cell. 1997 Sep 5;90(5):883-94 [PMID: 9298900]
  36. Neuron. 1997 Sep;19(3):625-34 [PMID: 9331353]
  37. J Biol Chem. 1999 Jul 23;274(30):20982-8 [PMID: 10409646]
  38. J Neurosci. 1999 Sep 1;19(17):7537-47 [PMID: 10460260]
  39. J Neurosci. 1999 Oct 1;19(19):8454-63 [PMID: 10493746]
  40. Mol Cell Biol. 1999 Nov;19(11):7870-85 [PMID: 10523675]
  41. J Biol Chem. 1998 Jan 30;273(5):2489-92 [PMID: 9446546]
  42. Science. 1998 Jan 23;279(5350):509-14 [PMID: 9438836]
  43. EMBO J. 1998 Feb 2;17(3):754-64 [PMID: 9451000]
  44. Development. 1998 Feb;125(3):453-61 [PMID: 9425140]
  45. Cell. 1998 Mar 20;92(6):785-95 [PMID: 9529254]
  46. Curr Opin Genet Dev. 1998 Feb;8(1):49-54 [PMID: 9529605]
  47. Biochem Biophys Res Commun. 1998 Apr 28;245(3):641-5 [PMID: 9588168]
  48. Mol Biol Cell. 1998 Jun;9(6):1379-94 [PMID: 9614181]
  49. J Cell Biol. 1998 Aug 10;142(3):815-25 [PMID: 9700168]
  50. EMBO J. 1998 Nov 16;17(22):6608-21 [PMID: 9822605]
  51. Cell Immunol. 1999 Feb 1;191(2):83-9 [PMID: 9973529]
  52. Mol Cell Biol. 2000 Jan;20(1):158-72 [PMID: 10594018]

MeSH Term

Animals
Cell Differentiation
GTP Phosphohydrolases
Genes, Dominant
Mutagenesis, Site-Directed
Neoplasm Proteins
Nerve Growth Factors
Nerve Tissue Proteins
Neurites
PC12 Cells
Rats
Recombinant Fusion Proteins
Signal Transduction
Transfection
cdc42 GTP-Binding Protein
rac1 GTP-Binding Protein

Chemicals

Neoplasm Proteins
Nerve Growth Factors
Nerve Tissue Proteins
Recombinant Fusion Proteins
Rhog protein, rat
GTP Phosphohydrolases
cdc42 GTP-Binding Protein
rac1 GTP-Binding Protein

Word Cloud

Created with Highcharts 10.0.0neuriteoutgrowthcellsRhoGCdc42PC12wild-typeactivedominant-negativeRac1expressionRhofamilyGTPasesNGFneuritesconstitutivelyalsoNGF-inducedsuppressedkeyregulatorsmallimplicatedcytoskeletalreorganizationsubsequentmorphologicalchangesvariouscelltypesAmongRacshowninvolvedneuronalstudyexaminedroleanothermembernervegrowthfactor-inducedExpressioninducedabsencemorphologyRhoG-expressingsimilarNGF-differentiatedConstitutivelyRhoG-transfectedextendedshortdevelopedlargelamellipodialfilopodialstructurestipsRhoG-inducedinhibitedcoexpressionadditionelevatedendogenousactivitiesfoundenhancedwhereasFurthermoreRas-inducedTakentogetherresultssuggestactingdownstreamRasupstreamSmallGTPase

Similar Articles

Cited By