New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that "primary" olfactory cortex functions like "association" cortex in other sensory systems.

D M Johnson, K R Illig, M Behan, L B Haberly
Author Information
  1. D M Johnson: Department of Anatomy, University of Wisconsin, Madison, Wisconsin 53706, USA.

Abstract

Associational connections of pyramidal cells in rat posterior piriform cortex were studied by direct visualization of axons stained by intracellular injection in vivo. The results revealed that individual cells have widespread axonal arbors that extend over nearly the full length of the cerebral hemisphere. Within piriform cortex these arbors are highly distributed with no regularly arranged patchy concentrations like those associated with the columnar organization in other primary sensory areas (i.e., where periodically arranged sets of cells have common response properties, inputs, and outputs). A lack of columnar organization was also indicated by a marked disparity in the intrinsic projection patterns of neighboring injected cells. Analysis of axonal branching patterns, bouton distributions, and dendritic arbors suggested that each pyramidal cell makes a small number of synaptic contacts on a large number (>1000) of other cells in piriform cortex at disparate locations. Axons from individual pyramidal cells also arborize extensively within many neighboring cortical areas, most of which send strong projections back to piriform cortex. These include areas involved in high-order functions in prefrontal, amygdaloid, entorhinal, and perirhinal cortex, to which there are few projections from other primary sensory areas. Our results suggest that piriform cortex performs correlative functions analogous to those in association areas of neocortex rather than those typical of primary sensory areas with which it has been traditionally classed. Findings from other studies suggest that the olfactory bulb subserves functions performed by primary areas in other sensory systems.

References

  1. Nature. 1988 Sep 22;335(6188):311-7 [PMID: 3047584]
  2. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3371-5 [PMID: 7724568]
  3. J Neurophysiol. 1989 Aug;62(2):369-85 [PMID: 2769336]
  4. Cereb Cortex. 1993 Nov-Dec;3(6):515-32 [PMID: 7511012]
  5. Cell. 1996 Nov 15;87(4):675-86 [PMID: 8929536]
  6. Ann Anat. 1993 Dec;175(6):509-18 [PMID: 8297039]
  7. J Comp Neurol. 1997 Aug 11;384(4):501-16 [PMID: 9259486]
  8. Cereb Cortex. 1991 Jan-Feb;1(1):1-47 [PMID: 1822724]
  9. Curr Opin Neurobiol. 1997 Aug;7(4):523-9 [PMID: 9287204]
  10. Neuron. 1994 Oct;13(4):771-90 [PMID: 7946328]
  11. Trends Neurosci. 1994 Mar;17(3):101-4 [PMID: 7515522]
  12. J Comp Neurol. 1998 Aug 24;398(2):179-205 [PMID: 9700566]
  13. Neuron. 1999 Jul;23(3):499-511 [PMID: 10433262]
  14. J Comp Neurol. 1982 Feb 10;205(1):30-48 [PMID: 7068948]
  15. J Neurophysiol. 1989 Apr;61(4):702-18 [PMID: 2723716]
  16. Rev Neurosci. 1994 Jul-Sep;5(3):227-50 [PMID: 7889215]
  17. Cereb Cortex. 1996 May-Jun;6(3):329-41 [PMID: 8670661]
  18. Ann N Y Acad Sci. 1999 Jun 29;877:383-96 [PMID: 10415660]
  19. Annu Rev Neurosci. 1996;19:517-44 [PMID: 8833453]
  20. J Comp Neurol. 1987 Sep 15;263(3):326-46 [PMID: 2822774]
  21. J Neurophysiol. 1995 Aug;74(2):733-50 [PMID: 7472378]
  22. J Neurosci. 1989 Nov;9(11):3741-52 [PMID: 2479724]
  23. J Comp Neurol. 1986 Jun 22;248(4):464-74 [PMID: 2424948]
  24. J Neurosci. 1997 Oct 15;17(20):7902-25 [PMID: 9315910]
  25. J Comp Neurol. 1978 Apr 15;178(4):711-40 [PMID: 632378]
  26. Cereb Cortex. 1991 Jan-Feb;1(1):80-94 [PMID: 1822727]
  27. Neurosci Res. 1998 Sep;32(1):33-46 [PMID: 9831250]
  28. J Comp Neurol. 1983 Oct 1;219(4):448-60 [PMID: 6643715]
  29. Prog Neurobiol. 1998 Jun;55(3):257-332 [PMID: 9643556]
  30. Curr Opin Neurobiol. 1999 Apr;9(2):164-70 [PMID: 10322185]
  31. Rev Neurol (Paris). 1995 Aug-Sep;151(8-9):486-94 [PMID: 8578069]
  32. Brain Res. 1975 Nov 21;98(3):596-600 [PMID: 1182541]
  33. Cell. 1999 Mar 5;96(5):713-23 [PMID: 10089886]
  34. J Comp Neurol. 1999 Jul 12;409(4):529-48 [PMID: 10376738]
  35. Brain Res Bull. 1981 Oct;7(4):427-34 [PMID: 6170394]
  36. J Neurophysiol. 1975 Sep;38(5):1284-96 [PMID: 809550]
  37. J Comp Neurol. 1990 Dec 22;302(4):920-34 [PMID: 2081821]
  38. Prog Neurobiol. 1995 Apr;45(6):585-619 [PMID: 7624486]
  39. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):739-43 [PMID: 8570626]
  40. J Comp Neurol. 1983 May 20;216(3):264-91 [PMID: 6306065]
  41. J Neurophysiol. 1984 Jan;51(1):90-112 [PMID: 6319624]
  42. J Neurosci. 1983 May;3(5):1116-33 [PMID: 6188819]
  43. J Neurosci. 1996 Aug 1;16(15):4757-75 [PMID: 8764663]
  44. J Neurophysiol. 1993 Jan;69(1):261-81 [PMID: 7679438]

Grants

  1. DC03271/NIDCD NIH HHS

MeSH Term

Animals
Association
Axons
Biotin
Cerebral Cortex
Dendrites
Dextrans
Fluorescent Dyes
Male
Olfactory Pathways
Presynaptic Terminals
Pyramidal Cells
Rats
Rats, Long-Evans

Chemicals

Dextrans
Fluorescent Dyes
biotinylated dextran amine
Biotin

Word Cloud

Created with Highcharts 10.0.0cortexcellsareaspiriformsensorypyramidalprimaryfunctionsarborssuggestintracellularinjectionresultsindividualaxonalarrangedlikecolumnarorganizationalsopatternsneighboringnumberprojectionsolfactorysystemsAssociationalconnectionsratposteriorstudieddirectvisualizationaxonsstainedvivorevealedwidespreadextendnearlyfulllengthcerebralhemisphereWithinhighlydistributedregularlypatchyconcentrationsassociatedieperiodicallysetscommonresponsepropertiesinputsoutputslackindicatedmarkeddisparityintrinsicprojectioninjectedAnalysisbranchingboutondistributionsdendriticsuggestedcellmakessmallsynapticcontactslarge>1000disparatelocationsAxonsarborizeextensivelywithinmanycorticalsendstrongbackincludeinvolvedhigh-orderprefrontalamygdaloidentorhinalperirhinalperformscorrelativeanalogousassociationneocortexrathertypicaltraditionallyclassedFindingsstudiesbulbsubservesperformedNewfeaturesconnectivityvisualized"primary""association"

Similar Articles

Cited By