The slow component of VO2 in professional cyclists.

A Lucía, J Hoyos, J L Chicharro
Author Information
  1. A Lucía: Departamento de Ciencias Morfológicas y Fisiología, Universidad Europea de Madrid, Spain. alejandro.lucia@mrfs.cisa.uem.es

Abstract

OBJECTIVES: To analyse the slow component of oxygen uptake (VO2) in professional cyclists and to determine whether this phenomenon is due to altered neuromuscular activity, as assessed by surface electromyography (EMG).
METHODS: The following variables were measured during 20 minute cycle ergometer tests performed at about 80% of VO2MAX in nine professional road cyclists (mean (SD) age 26 (2) years; VO2max 72.6 (2.2) ml/kg/min): heart rate (HR), gas exchange variables (VO2, ventilation (VE), tidal volume (VT), breathing frequency (fb), ventilatory equivalents for oxygen and carbon dioxide (VE/VO2 and VE/VCO2 respectively), respiratory exchange ratio (RER), and end tidal PO2 and PCO2 (PETO2 and PETCO2 respectively)), blood variables (lactate, pH, and [HCO3-]) and EMG data (root mean from square voltage (rms-EMG) and mean power frequency (MPF)) from the vastus lateralis muscle.
RESULTS: The mean magnitude of the slow component (from the end of the third minute to the end of exercise) was 130 (0.04) ml in 17 minutes or 7.6 ml/min. Significant increases from three minute to end of exercise values were found for the following variables: VO2 (p<0.01), HR (p<0.01), VE (p<0.05), fb (p<0.01), VE/VO2 (p<0.05), VE/VCO2 (p<0.01), PETO2 (p<0.05), and blood lactate (p<0.05). In contrast, rms-EMG and MPF showed no change (p>0.05) throughout the exercise tests.
CONCLUSIONS: A significant but small VO2 slow component was shown in professional cyclists during constant load heavy exercise. The results suggest that the primary origin of the slow component is not neuromuscular factors in these subjects, at least for exercise intensities up to 80% of VO2MAX.

References

  1. Med Sci Sports Exerc. 1992 Jul;24(7):782-8 [PMID: 1501563]
  2. Br J Sports Med. 1999 Jun;33(3):178-85 [PMID: 10378070]
  3. Int J Sports Med. 1994 Apr;15(3):152-7 [PMID: 8005729]
  4. J Appl Physiol. 1974 Aug;37(2):247-8 [PMID: 4850854]
  5. J Appl Physiol Respir Environ Exerc Physiol. 1978 Sep;45(3):381-4 [PMID: 701123]
  6. Jpn J Physiol. 1981;31(4):585-97 [PMID: 7328909]
  7. J Gen Physiol. 1982 Jan;79(1):147-66 [PMID: 7061985]
  8. Electroencephalogr Clin Neurophysiol. 1985 Feb;60(2):130-4 [PMID: 2578364]
  9. Med Sci Sports Exerc. 1985 Feb;17(1):6-21 [PMID: 3884961]
  10. J Appl Physiol (1985). 1987 Jan;62(1):199-207 [PMID: 3558181]
  11. Eur J Appl Physiol Occup Physiol. 1987;56(3):260-5 [PMID: 3569235]
  12. Am Rev Respir Dis. 1987 May;135(5):1080-4 [PMID: 3579007]
  13. J Appl Physiol (1985). 1987 Jul;63(1):181-7 [PMID: 3624123]
  14. Eur J Appl Physiol Occup Physiol. 1987;56(6):643-9 [PMID: 3119335]
  15. Eur J Appl Physiol Occup Physiol. 1989;59(1-2):21-8 [PMID: 2583146]
  16. Eur J Appl Physiol Occup Physiol. 1990;59(6):421-9 [PMID: 2303047]
  17. Int J Sports Med. 1990 Feb;11(1):26-32 [PMID: 2318561]
  18. J Appl Physiol (1985). 1991 Sep;71(3):871-7 [PMID: 1757323]
  19. J Appl Physiol (1985). 1991 Oct;71(4):1245-60 [PMID: 1757346]
  20. J Appl Physiol (1985). 1992 Feb;72(2):796-800 [PMID: 1559960]
  21. J Appl Physiol (1985). 1992 May;72(5):1818-25 [PMID: 1601791]
  22. Ann Physiol Anthropol. 1992 May;11(3):257-62 [PMID: 1642722]
  23. Med Sci Sports Exerc. 1994 Nov;26(11):1319-26 [PMID: 7741865]
  24. Med Sci Sports Exerc. 1994 Nov;26(11):1327-34 [PMID: 7837952]
  25. Med Sci Sports Exerc. 1994 Nov;26(11):1341-6 [PMID: 7837954]
  26. J Appl Physiol (1985). 1994 Nov;77(5):2413-9 [PMID: 7868463]
  27. Eur J Appl Physiol Occup Physiol. 1994;69(6):508-15 [PMID: 7713071]
  28. J Appl Physiol (1985). 1995 Sep;79(3):838-45 [PMID: 8567526]
  29. Exerc Sport Sci Rev. 1996;24:35-71 [PMID: 8744246]
  30. Int J Sports Med. 1998 Jul;19(5):342-8 [PMID: 9721058]
  31. J Sports Med Phys Fitness. 1998 Jun;38(2):124-31 [PMID: 9763797]
  32. Br J Sports Med. 1998 Sep;32(3):199-211 [PMID: 9773167]
  33. J Physiol. 1998 Dec 15;513 ( Pt 3):895-905 [PMID: 9824726]
  34. J Appl Physiol (1985). 1998 Dec;85(6):2118-24 [PMID: 9843534]
  35. Int J Sports Med. 1999 Apr;20(3):167-72 [PMID: 10333093]
  36. Eur J Appl Physiol Occup Physiol. 1999 May;79(6):512-21 [PMID: 10344461]
  37. J Appl Physiol (1985). 1994 Feb;76(2):787-92 [PMID: 8175590]

MeSH Term

Adult
Bicycling
Electromyography
Heart Rate
Humans
Lactates
Leg
Male
Muscle Fatigue
Muscle, Skeletal
Oxygen Consumption
Pulmonary Gas Exchange
Respiratory Function Tests
Statistics, Nonparametric

Chemicals

Lactates

Word Cloud

Created with Highcharts 10.0.0p<0slowcomponentVO2exercise05professionalcyclistsmeanend01variablesminute2oxygenneuromuscularEMGfollowingtests80%VO2MAX6HRexchangeVEtidalfrequencyfbVE/VO2VE/VCO2respectivelyPETO2bloodlactaterms-EMGMPFOBJECTIVES:analyseuptakedeterminewhetherphenomenonduealteredactivityassessedsurfaceelectromyographyMETHODS:measured20cycleergometerperformednineroadSDage26yearsVO2max72ml/kg/min:heartrategasventilationvolumeVTbreathingventilatoryequivalentscarbondioxiderespiratoryratioRERPO2PCO2PETCO2pH[HCO3-]datarootsquarevoltagepowervastuslateralismuscleRESULTS:magnitudethird130004ml17minutes7ml/minSignificantincreasesthreevaluesfoundvariables:contrastshowedchangep>0throughoutCONCLUSIONS:significantsmallshownconstantloadheavyresultssuggestprimaryoriginfactorssubjectsleastintensities

Similar Articles

Cited By