Habituation of Salmonella spp. at reduced water activity and its effect on heat tolerance.

K L Mattick, F Jorgensen, J D Legan, H M Lappin-Scott, T J Humphrey
Author Information
  1. K L Mattick: Public Health Laboratory Service, Food Microbiology Research Unit, Heavitree, Exeter EX2 5AD, United Kingdom. K.L.Mattick@ex.ac.uk

Abstract

The effect of habituation at reduced water activity (a(w)) on heat tolerance of Salmonella spp. was investigated. Stationary-phase cells were exposed to a(w) 0.95 in broths containing glucose-fructose, sodium chloride, or glycerol at 21 degrees C for up to a week prior to heat challenge at 54 degrees C. In addition, the effects of different a(w)s and heat challenge temperatures were investigated. Habituation at a(w) 0.95 resulted in increased heat tolerance at 54 degrees C with all solutes tested. The extent of the increase and the optimal habituation time depended on the solute used. Exposure to broths containing glucose-fructose (a(w) 0.95) for 12 h resulted in maximal heat tolerance, with more than a fourfold increase in D(54) values. Cells held for more than 72 h in these conditions, however, became as heat sensitive as nonhabituated populations. Habituation in the presence of sodium chloride or glycerol gave rise to less pronounced but still significant increases in heat tolerance at 54 degrees C, and a shorter incubation time was required to maximize tolerance. The increase in heat tolerance following habituation in broths containing glucose-fructose (a(w) 0.95) was RpoS independent. The presence of chloramphenicol or rifampin during habituation and inactivation did not affect the extent of heat tolerance achieved, suggesting that de novo protein synthesis was probably not necessary. These data highlight the importance of cell prehistory prior to heat inactivation and may have implications for food manufacturers using low-a(w) ingredients.

References

  1. Br Med J (Clin Res Ed). 1983 Apr 30;286(6375):1394 [PMID: 6404474]
  2. Commun Dis Rep CDR Wkly. 1999 Jan 22;9(4):29, 32 [PMID: 9988961]
  3. Appl Microbiol. 1970 Mar;19(3):429-33 [PMID: 4909351]
  4. Lancet. 1983 Mar 12;1(8324):574-7 [PMID: 6131266]
  5. Poult Sci. 1969 Jul;48(4):1156-66 [PMID: 5387883]
  6. BMJ. 1996 Nov 2;313(7065):1105-7 [PMID: 8916693]
  7. Commun Dis Rep CDR Wkly. 1995 Feb 17;5(7):29, 32 [PMID: 7533590]
  8. J Appl Bacteriol. 1990 Mar;68(3):241-6 [PMID: 2187845]
  9. J Biol Chem. 1989 Feb 5;264(4):2126-33 [PMID: 2644255]
  10. J Bacteriol. 1999 Mar;181(6):1827-30 [PMID: 10074075]
  11. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8257-61 [PMID: 2682642]
  12. Nature. 1992 May 14;357(6374):167-9 [PMID: 1349729]
  13. J Appl Bacteriol. 1970 Sep;33(3):515-22 [PMID: 5491626]
  14. N Engl J Med. 1998 May 7;338(19):1333-8 [PMID: 9571252]
  15. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8648-52 [PMID: 8378342]
  16. Mol Microbiol. 1999 Dec;34(5):1029-38 [PMID: 10594827]
  17. FEMS Microbiol Lett. 1997 Aug 1;153(1):33-42 [PMID: 9252570]
  18. J Food Prot. 1996 Apr;59(4):426-428 [PMID: 31158982]
  19. FEMS Microbiol Lett. 1999 May 1;174(1):49-55 [PMID: 10234821]
  20. Appl Environ Microbiol. 1995 Aug;61(8):3161-4 [PMID: 7487046]
  21. Vet Rec. 1998 Nov 14;143(20):562-3 [PMID: 9854321]
  22. J Hyg (Lond). 1938 Nov;38(6):732-49 [PMID: 20475467]
  23. Appl Microbiol. 1972 Feb;23(2):415-20 [PMID: 4552893]
  24. J Bacteriol. 1991 Jul;173(13):4188-94 [PMID: 2061293]
  25. Appl Environ Microbiol. 2000 Apr;66(4):1274-9 [PMID: 10742199]
  26. J Appl Bacteriol. 1990 Oct;69(4):493-7 [PMID: 2292515]
  27. Commun Dis Rep CDR Rev. 1994 Oct 14;4(11):R130-5 [PMID: 7787922]
  28. J Food Prot. 1997 Feb;60(2):181-184 [PMID: 31195512]
  29. J Bacteriol. 1943 Mar;45(3):265-72 [PMID: 16560631]
  30. BMJ. 1999 Apr 17;318(7190):1046-50 [PMID: 10205103]
  31. Appl Microbiol. 1968 Oct;16(10):1621-2 [PMID: 4879219]
  32. J Bacteriol. 1991 Dec;173(24):7918-24 [PMID: 1744047]
  33. BMJ. 1996 Nov 2;313(7065):1107-9 [PMID: 8916694]
  34. J Appl Bacteriol. 1974 Mar;37(1):31-43 [PMID: 4603072]
  35. Appl Microbiol. 1966 May;14(3):416-20 [PMID: 5339362]

MeSH Term

Adaptation, Physiological
Animals
Bacterial Proteins
Cattle
Culture Media
Hot Temperature
Salmonella
Sigma Factor
Water

Chemicals

Bacterial Proteins
Culture Media
Sigma Factor
sigma factor KatF protein, Bacteria
Water

Word Cloud

Created with Highcharts 10.0.0heattolerancewhabituation095degreesC54brothscontainingglucose-fructoseHabituationincreaseeffectreducedwateractivitySalmonellasppinvestigatedsodiumchlorideglycerolpriorchallengeresultedextenttimehpresenceinactivationStationary-phasecellsexposed21weekadditioneffectsdifferentstemperaturesincreasedsolutestestedoptimaldependedsoluteusedExposure12maximalfourfoldDvaluesCellsheld72conditionshoweverbecamesensitivenonhabituatedpopulationsgaveriselesspronouncedstillsignificantincreasesshorterincubationrequiredmaximizefollowingRpoSindependentchloramphenicolrifampinaffectachievedsuggestingdenovoproteinsynthesisprobablynecessarydatahighlightimportancecellprehistorymayimplicationsfoodmanufacturersusinglow-aingredients

Similar Articles

Cited By