Ion selectivity filter regulates local anesthetic inhibition of G-protein-gated inwardly rectifying K+ channels.

P A Slesinger
Author Information
  1. P A Slesinger: The Salk Institute for Biological Studies, Peptide Biology Lab, La Jolla, California 92037, USA. slesinger@salk.edu

Abstract

The weaver mutation (G156S) in G-protein-gated inwardly rectifying K+ (GIRK) channels alters ion selectivity and reveals sensitivity to inhibition by a charged local anesthetic, QX-314, applied extracellularly. In this paper, disrupting the ion selectivity in another GIRK channel, chimera I1G1(M), generates a GIRK channel that is also inhibited by extracellular local anesthetics. I1G1(M) is a chimera of IRK1 (G-protein-insensitive) and GIRK1 and contains the hydrophobic domains (M1-pore-loop-M2) of GIRK1 (G1(M)) with the N- and C-terminal domains of IRK1 (I1). The local anesthetic binding site in I1G1(M) is indistinguishable from that in GIRK2(wv) channels. Whereas chimera I1G1(M) loses K+ selectivity, although there are no mutations in the pore-loop complex, chimera I1G2(M), which contains the hydrophobic domain from GIRK2, exhibits normal K+ selectivity. Mutation of two amino acids that are unique in the pore-loop complex of GIRK1 (F137S and A143T) restores K+ selectivity and eliminates the inhibition by extracellular local anesthetics, suggesting that the pore-loop complex prevents QX-314 from reaching the intrapore site. Alanine mutations in the extracellular half of the M2 transmembrane domain alter QX-314 inhibition, indicating the M2 forms part of the intrapore binding site. Finally, the inhibition of G-protein-activated currents by intracellular QX-314 appears to be different from that observed in nonselective GIRK channels. The results suggest that inward rectifiers contain an intrapore-binding site for local anesthetic that is normally inaccessible from extracellular charged local anesthetics.

References

  1. Nat Genet. 1995 Oct;11(2):126-9 [PMID: 7550338]
  2. J Biol Chem. 1998 Oct 16;273(42):27205-12 [PMID: 9765241]
  3. Cell. 1995 Nov 3;83(3):443-9 [PMID: 8521474]
  4. Nature. 1993 Aug 26;364(6440):802-6 [PMID: 8355805]
  5. Biochem Biophys Res Commun. 1995 Jul 17;212(2):657-63 [PMID: 7626080]
  6. J Biol Chem. 1995 Dec 1;270(48):28660-7 [PMID: 7499385]
  7. J Biol Chem. 2000 Jan 14;275(2):1137-44 [PMID: 10625656]
  8. Physiol Rev. 1990 Apr;70(2):513-65 [PMID: 1690904]
  9. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12210-7 [PMID: 9342388]
  10. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15429-34 [PMID: 8986828]
  11. FEBS Lett. 1996 Jan 22;379(1):31-7 [PMID: 8566224]
  12. Neuron. 1996 Feb;16(2):321-31 [PMID: 8789947]
  13. Neuron. 1996 Feb;16(2):423-9 [PMID: 8789957]
  14. Neuron. 1999 Mar;22(3):571-80 [PMID: 10197536]
  15. Biophys J. 1999 Mar;76(3):1377-83 [PMID: 10049320]
  16. J Physiol. 1996 Feb 1;490 ( Pt 3):633-45 [PMID: 8683463]
  17. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6542-6 [PMID: 7604029]
  18. Brain Res. 1994 Mar 14;639(2):320-4 [PMID: 8205485]
  19. Neuron. 1996 May;16(5):941-52 [PMID: 8630252]
  20. Neurosci Lett. 1990 Mar 14;110(3):309-13 [PMID: 2325903]
  21. Neuropharmacology. 1996;35(7):831-9 [PMID: 8938714]
  22. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14126-31 [PMID: 9391164]
  23. J Physiol. 1993 Apr;463:391-407 [PMID: 8246190]
  24. Nature. 1994 Sep 15;371(6494):243-6 [PMID: 7915826]
  25. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):923-7 [PMID: 9023358]
  26. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9270-5 [PMID: 8799190]
  27. Neuron. 1995 Nov;15(5):1133-43 [PMID: 7576656]
  28. Biochem Biophys Res Commun. 1995 Jul 26;212(3):1022-8 [PMID: 7626088]
  29. Nature. 1994 Jul 14;370(6485):143-6 [PMID: 8022483]
  30. Biophys J. 1998 Sep;75(3):1330-9 [PMID: 9726934]
  31. J Gen Physiol. 1995 Dec;106(6):1069-87 [PMID: 8786351]
  32. Science. 1991 Feb 22;251(4996):939-42 [PMID: 2000494]
  33. Cell. 1999 Mar 19;96(6):879-91 [PMID: 10102275]
  34. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14193-8 [PMID: 8943083]
  35. Nature. 1995 Mar 9;374(6518):135-41 [PMID: 7877685]
  36. Eur J Pharmacol. 1991 Jun 25;199(2):259-62 [PMID: 1659537]
  37. J Neurophysiol. 1993 Feb;69(2):630-5 [PMID: 8096243]
  38. Curr Opin Neurobiol. 1995 Jun;5(3):268-77 [PMID: 7580148]
  39. Neuron. 1995 Nov;15(5):1145-56 [PMID: 7576657]
  40. Anticancer Res. 1995 Sep-Oct;15(5B):1997-2000 [PMID: 8572591]
  41. J Biol Chem. 1995 Jun 16;270(24):14604-10 [PMID: 7540174]
  42. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5456-60 [PMID: 9144259]
  43. Science. 1998 Apr 3;280(5360):69-77 [PMID: 9525859]
  44. J Neurophysiol. 1999 Jun;81(6):2875-83 [PMID: 10368404]
  45. Biophys J. 1996 Feb;70(2):754-61 [PMID: 8789092]
  46. Science. 1996 Feb 2;271(5249):653-6 [PMID: 8571129]
  47. J Gen Physiol. 1973 Jun;61(6):687-708 [PMID: 4541078]
  48. Biophys J. 1994 Apr;66(4):1061-7 [PMID: 8038378]
  49. Pflugers Arch Gesamte Physiol Menschen Tiere. 1958;266(3):324-34 [PMID: 13553747]
  50. J Biol Chem. 1995 Dec 8;270(49):29059-62 [PMID: 7493925]
  51. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12046-9 [PMID: 8618841]
  52. Br J Pharmacol. 1989 Sep;98(1):13-28 [PMID: 2679954]
  53. FEBS Lett. 1996 Jul 29;390(3):253-7 [PMID: 8706871]

MeSH Term

Anesthetics, Local
Animals
Barium
Binding Sites
Biophysical Phenomena
Biophysics
Female
G Protein-Coupled Inwardly-Rectifying Potassium Channels
GTP-Binding Proteins
In Vitro Techniques
Ion Channel Gating
Kinetics
Lidocaine
Mutation
Oocytes
Potassium Channel Blockers
Potassium Channels
Potassium Channels, Inwardly Rectifying
Recombinant Fusion Proteins
Xenopus

Chemicals

Anesthetics, Local
G Protein-Coupled Inwardly-Rectifying Potassium Channels
Potassium Channel Blockers
Potassium Channels
Potassium Channels, Inwardly Rectifying
Recombinant Fusion Proteins
QX-314
Barium
Lidocaine
GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0localselectivityMK+inhibitionGIRKchannelsanestheticQX-314chimeraI1G1extracellularsiteanestheticsGIRK1pore-loopcomplexG-protein-gatedinwardlyrectifyingionchargedchannelIRK1containshydrophobicdomainsbindingGIRK2mutationsdomainintraporeM2weavermutationG156SaltersrevealssensitivityappliedextracellularlypaperdisruptinganothergeneratesalsoinhibitedG-protein-insensitiveM1-pore-loop-M2G1N-C-terminalI1indistinguishablewvWhereaslosesalthoughI1G2exhibitsnormalMutationtwoaminoacidsuniqueF137SA143TrestoreseliminatessuggestingpreventsreachingAlaninehalftransmembranealterindicatingformspartFinallyG-protein-activatedcurrentsintracellularappearsdifferentobservednonselectiveresultssuggestinwardrectifierscontainintrapore-bindingnormallyinaccessibleIonfilterregulates

Similar Articles

Cited By