Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils.

P Y Cheung, B K Kinkle
Author Information
  1. P Y Cheung: Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA.

Abstract

Degradative strains of fast-growing Mycobacterium spp. are commonly isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Little is known, however, about the ecology and diversity of indigenous populations of these fast-growing mycobacteria in contaminated environments. In the present study 16S rRNA genes were PCR amplified using Mycobacterium-specific primers and separated by temperature gradient gel electrophoresis (TGGE), and prominent bands were sequenced to compare the indigenous Mycobacterium community structures in four pairs of soil samples taken from heavily contaminated and less contaminated areas at four different sites. Overall, TGGE profiles obtained from heavily contaminated soils were less diverse than those from less contaminated soils. This decrease in diversity may be due to toxicity, since significantly fewer Mycobacterium phylotypes were detected in soils determined to be toxic by the Microtox assay than in nontoxic soils. Sequencing and phylogenetic analysis of prominent TGGE bands indicated that novel strains dominated the soil Mycobacterium community. Mineralization studies using [(14)C]pyrene added to four petroleum-contaminated soils, with and without the addition of the known pyrene degrader Mycobacterium sp. strain RJGII-135, indicated that inoculation increased the level of degradation in three of the four soils. Mineralization results obtained from a sterilized soil inoculated with strain RJGII-135 suggested that competition with indigenous microorganisms may be a significant factor affecting biodegradation of PAHs. Pyrene-amended soils, with and without inoculation with strain RJGII-135, experienced both increases and decreases in the population sizes of the inoculated strain and indigenous Mycobacterium populations during incubation.

Associated Data

GENBANK | AF220427; AF220428; AF220429; AF220430; AF220431; AF220432; AF220433; AF294742; AF294743; AF294744; AF294745; AF294746; AF294747; AF294748; AF294749; AF294750; AF330695

References

  1. Appl Environ Microbiol. 1990 May;56(5):1392-6 [PMID: 2339892]
  2. Appl Microbiol Biotechnol. 1996 Oct;46(3):307-12 [PMID: 8933844]
  3. Appl Environ Microbiol. 1999 Jul;65(7):3056-63 [PMID: 10388703]
  4. Appl Environ Microbiol. 1992 Sep;58(9):3117-21 [PMID: 1444426]
  5. Bull Environ Contam Toxicol. 1993 Apr;50(4):486-91 [PMID: 8467131]
  6. Appl Environ Microbiol. 1993 Jun;59(6):1927-30 [PMID: 8328808]
  7. Appl Environ Microbiol. 1995 Sep;61(9):3221-6 [PMID: 7574631]
  8. Appl Environ Microbiol. 1997 Aug;63(8):3233-41 [PMID: 9251210]
  9. FEMS Microbiol Lett. 1997 Aug 1;153(1):51-6 [PMID: 9252572]
  10. Appl Environ Microbiol. 1998 Sep;64(9):3422-8 [PMID: 9726892]
  11. Appl Environ Microbiol. 1991 Dec;57(12):3462-9 [PMID: 1785924]
  12. Appl Environ Microbiol. 1985 Oct;50(4):977-83 [PMID: 4083891]
  13. Nucleic Acids Res. 1993 Jul 1;21(13):2963-5 [PMID: 8332518]
  14. Appl Environ Microbiol. 1989 Jan;55(1):154-8 [PMID: 2705768]
  15. Appl Environ Microbiol. 2000 Jun;66(6):2392-9 [PMID: 10831416]
  16. Appl Environ Microbiol. 1998 Jul;64(7):2739-42 [PMID: 9647861]
  17. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 [PMID: 9396791]
  18. Appl Environ Microbiol. 1996 Dec;62(12):4361-6 [PMID: 16535458]
  19. Environ Pollut. 1989;56(4):337-51 [PMID: 15092474]
  20. Appl Environ Microbiol. 1998 Jan;64(1):238-45 [PMID: 16349483]
  21. Appl Environ Microbiol. 1999 May;65(5):1980-90 [PMID: 10223989]
  22. Appl Environ Microbiol. 1999 May;65(5):2143-50 [PMID: 10224013]
  23. Appl Environ Microbiol. 1988 Apr;54(4):937-44 [PMID: 3377503]
  24. Appl Environ Microbiol. 1996 Jul;62(7):2311-6 [PMID: 16535350]
  25. Appl Environ Microbiol. 1988 Oct;54(10):2549-55 [PMID: 3202633]
  26. Appl Environ Microbiol. 1997 Dec;63(12):4993-5 [PMID: 16535760]
  27. Appl Environ Microbiol. 1996 Jan;62(1):13-9 [PMID: 8572690]
  28. Appl Environ Microbiol. 1999 Feb;65(2):549-52 [PMID: 9925581]
  29. Nucleic Acids Res. 1999 Jan 1;27(1):171-3 [PMID: 9847171]
  30. Appl Environ Microbiol. 1998 Aug;64(8):3014-22 [PMID: 9687466]
  31. Appl Environ Microbiol. 1994 May;60(5):1687-9 [PMID: 8017949]
  32. Appl Environ Microbiol. 1988 Jun;54(6):1612-4 [PMID: 3415226]
  33. Appl Environ Microbiol. 1988 Oct;54(10):2556-65 [PMID: 3202634]
  34. Appl Environ Microbiol. 1989 Aug;55(8):1968-73 [PMID: 2782874]
  35. Environ Sci Technol. 1995 Feb 1;29(2):537-45 [PMID: 22201403]
  36. Appl Environ Microbiol. 1996 Feb;62(2):316-22 [PMID: 8593035]
  37. Int J Syst Bacteriol. 1996 Jul;46(3):683-7 [PMID: 8782676]
  38. Appl Environ Microbiol. 1999 Aug;65(8):3566-74 [PMID: 10427050]
  39. Appl Environ Microbiol. 1999 Oct;65(10):4693-6 [PMID: 10508110]
  40. Appl Environ Microbiol. 1993 Mar;59(3):800-6 [PMID: 8481006]
  41. Appl Environ Microbiol. 1997 Apr;63(4):1367-74 [PMID: 9097433]
  42. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]

Grants

  1. P42 ES004908/NIEHS NIH HHS
  2. P42 ES 04908/NIEHS NIH HHS

MeSH Term

Biodegradation, Environmental
DNA, Bacterial
DNA, Ribosomal
Ecosystem
Electrophoresis, Polyacrylamide Gel
Genes, rRNA
Molecular Sequence Data
Mycobacterium
Petroleum
Phylogeny
Polymerase Chain Reaction
Pyrenes
RNA, Ribosomal, 16S
Sequence Analysis, DNA
Soil Microbiology
Soil Pollutants
Temperature

Chemicals

DNA, Bacterial
DNA, Ribosomal
Petroleum
Pyrenes
RNA, Ribosomal, 16S
Soil Pollutants

Word Cloud

Created with Highcharts 10.0.0soilsMycobacteriumcontaminatedindigenousfourstraindiversityTGGEsoillessRJGII-135strainsfast-growingknownpopulationsusingprominentbandscommunityheavilyobtainedmayindicatedMineralizationpetroleum-contaminatedwithoutpyreneinoculationinoculatedDegradativesppcommonlyisolatedpolycyclicaromatichydrocarbonPAH-contaminatedLittlehoweverecologymycobacteriaenvironmentspresentstudy16SrRNAgenesPCRamplifiedMycobacterium-specificprimersseparatedtemperaturegradientgelelectrophoresissequencedcomparestructurespairssamplestakenareasdifferentsitesOverallprofilesdiversedecreaseduetoxicitysincesignificantlyfewerphylotypesdetecteddeterminedtoxicMicrotoxassaynontoxicSequencingphylogeneticanalysisnoveldominatedstudies[14C]pyreneaddedadditiondegraderspincreasedleveldegradationthreeresultssterilizedsuggestedcompetitionmicroorganismssignificantfactoraffectingbiodegradationPAHsPyrene-amendedexperiencedincreasesdecreasespopulationsizesincubationmineralization

Similar Articles

Cited By