- T Tenson: Institute of Molecular and Cell Biology, Tartu University, Riia 23, Tartu 51010, Estonia. tenson@tamm.ebc.ee
Translation of specific short peptides can render the ribosome resistant to macrolide antibiotics such as erythromycin. Peptides act in cis upon the ribosome on which they have been translated. Amino acid sequence and size are critical for peptide activity. Pentapeptides with different consensus sequences confer resistance to structurally different macrolide antibiotics, suggesting direct interaction between the peptide and the drug on the ribosome. Translation of resistance peptides may result in expulsion of the macrolide antibiotics from the ribosome. The consensus sequence of peptides conferring erythromycin resistance is similar to the sequence of the leader peptide involved in translational attenuation of erythromycin resistance genes, indicating that a similar type of interaction between the nascent peptide and antibiotics can occur in both cases.