Identification of a group 1-like capsular polysaccharide operon for Vibrio vulnificus.

A C Wright, J L Powell, J B Kaper, J G Morris
Author Information
  1. A C Wright: Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. awright@gnv.ifas.ufl.edu

Abstract

Virulence of Vibrio vulnificus correlates with changes in colony morphology that are indicative of a reversible phase variation for expression of capsular polysaccharide (CPS). Encapsulated variants are virulent with opaque colonies, whereas phase variants with reduced CPS expression are attenuated and are translucent. Using TnphoA mutagenesis, we identified a V. vulnificus CPS locus, which included an upstream ops element, a wza gene (wza(Vv)), and several open reading frames with homology to CPS biosynthetic genes. This genetic organization is characteristic of group 1 CPS operons. The wza gene product is required for transport of CPS to the cell surface in Escherichia coli. Polar transposon mutations in wza(Vv) eliminated expression of downstream biosynthetic genes, confirming operon structure. On the other hand, nonpolar inactivation of wza(Vv) was specific for CPS transport, did not alter CPS biosynthesis, and could be complemented in trans. Southern analysis of CPS phase variants revealed deletions or rearrangements at this locus. A survey of environmental isolates indicated a correlation between deletions in wza(Vv) and loss of virulent phenotype, suggesting a genetic mechanism for CPS phase variation. Full virulence in mice required surface expression of CPS and supported the essential role of capsule in the pathogenesis of V. vulnificus.

References

  1. Microbiol Immunol. 1987;31(5):393-401 [PMID: 3116370]
  2. Mol Microbiol. 1999 Mar;31(5):1307-19 [PMID: 10200953]
  3. Infect Immun. 1990 Jun;58(6):1769-73 [PMID: 2160432]
  4. Mol Microbiol. 1990 Nov;4(11):1853-62 [PMID: 2082145]
  5. Mol Microbiol. 1991 May;5(5):1251-63 [PMID: 1659649]
  6. Microbios. 1991;67(272-273):141-9 [PMID: 1779875]
  7. Infect Immun. 1992 Mar;60(3):798-803 [PMID: 1371768]
  8. J Bacteriol. 1992 Apr;174(8):2620-30 [PMID: 1556081]
  9. Appl Environ Microbiol. 1993 Feb;59(2):541-6 [PMID: 8434919]
  10. Microbiol Rev. 1993 Mar;57(1):50-108 [PMID: 8096622]
  11. J Infect Dis. 1993 Jul;168(1):172-6 [PMID: 8515106]
  12. Cell. 1993 Jul 30;74(2):269-80 [PMID: 8343955]
  13. J Bacteriol. 1993 Sep;175(18):5899-906 [PMID: 8376337]
  14. J Bacteriol. 1993 Sep;175(18):5984-92 [PMID: 8397188]
  15. Appl Environ Microbiol. 1994 Mar;60(3):984-8 [PMID: 8161189]
  16. J Bacteriol. 1994 Jul;176(13):4025-33 [PMID: 8021185]
  17. J Biol Chem. 1994 Aug 5;269(31):20149-58 [PMID: 8051103]
  18. Mol Microbiol. 1994 Jun;12(5):855-6 [PMID: 8052136]
  19. Clin Microbiol Rev. 1994 Oct;7(4):419-25 [PMID: 7834599]
  20. J Bacteriol. 1995 Apr;177(7):1788-96 [PMID: 7896702]
  21. Mol Microbiol. 1995 Mar;15(5):917-33 [PMID: 7596293]
  22. J Bacteriol. 1995 Jul;177(14):3992-7 [PMID: 7608072]
  23. Mol Microbiol. 1995 May;16(3):425-39 [PMID: 7565104]
  24. Mol Microbiol. 1995 Jun;16(5):977-89 [PMID: 7476194]
  25. Appl Environ Microbiol. 1996 Feb;62(2):717-24 [PMID: 8593075]
  26. Infect Immun. 1996 Jun;64(6):2220-4 [PMID: 8675330]
  27. Infect Immun. 1996 Jul;64(7):2834-8 [PMID: 8698519]
  28. J Bacteriol. 1996 Jul;178(14):4273-80 [PMID: 8763957]
  29. J Bacteriol. 1996 Aug;178(16):4885-93 [PMID: 8759852]
  30. Mol Microbiol. 1996 Feb;19(4):705-13 [PMID: 8820641]
  31. Annu Rev Microbiol. 1996;50:285-315 [PMID: 8905082]
  32. Trends Microbiol. 1996 Dec;4(12):495-503 [PMID: 9004408]
  33. Anal Biochem. 1997 Aug 1;250(2):186-95 [PMID: 9245438]
  34. Infect Immun. 1997 Sep;65(9):3713-8 [PMID: 9284142]
  35. Infect Immun. 1998 Jun;66(6):2601-6 [PMID: 9596722]
  36. EMBO J. 2000 Jan 4;19(1):57-66 [PMID: 10619844]
  37. Microbes Infect. 2000 Feb;2(2):177-88 [PMID: 10742690]
  38. Infect Immun. 2000 Oct;68(10):5785-93 [PMID: 10992486]
  39. Mol Microbiol. 1999 Mar;31(5):1321-32 [PMID: 10200954]
  40. Infect Immun. 1999 May;67(5):2250-7 [PMID: 10225881]
  41. FEMS Microbiol Lett. 1999 May 15;174(2):207-14 [PMID: 10339810]
  42. N Engl J Med. 1979 Jan 4;300(1):1-5 [PMID: 758155]
  43. Infect Immun. 1981 Nov;34(2):503-7 [PMID: 7309236]
  44. J Mol Biol. 1982 May 5;157(1):105-32 [PMID: 7108955]
  45. Infect Immun. 1984 Sep;45(3):537-43 [PMID: 6469346]
  46. Infect Immun. 1985 Feb;47(2):446-51 [PMID: 2578434]
  47. Plasmid. 1985 Mar;13(2):149-53 [PMID: 2987994]
  48. Infect Immun. 1985 Sep;49(3):715-8 [PMID: 4030101]
  49. J Bacteriol. 1985 Oct;164(1):70-7 [PMID: 3900050]
  50. Infect Immun. 1987 Jan;55(1):269-72 [PMID: 2432016]
  51. Infect Immun. 1998 Dec;66(12):5659-68 [PMID: 9826339]
  52. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4402-5 [PMID: 2837765]

MeSH Term

Amino Acid Sequence
Animals
Bacterial Capsules
Base Sequence
Biological Transport
Cell Membrane
Conserved Sequence
DNA, Bacterial
Disease Models, Animal
Female
Genetic Variation
Mice
Mice, Inbred C57BL
Molecular Sequence Data
Operon
Regulatory Sequences, Nucleic Acid
Sequence Homology, Amino Acid
Vibrio
Vibrio Infections

Chemicals

DNA, Bacterial

Word Cloud

Created with Highcharts 10.0.0CPSwzavulnificusphaseexpressionVvvariantsVibriovariationcapsularpolysaccharidevirulentVlocusgenebiosyntheticgenesgeneticgrouprequiredtransportsurfaceoperondeletionsVirulencecorrelateschangescolonymorphologyindicativereversibleEncapsulatedopaquecolonieswhereasreducedattenuatedtranslucentUsingTnphoAmutagenesisidentifiedincludedupstreamopselementseveralopenreadingframeshomologyorganizationcharacteristic1operonsproductcellEscherichiacoliPolartransposonmutationseliminateddownstreamconfirmingstructurehandnonpolarinactivationspecificalterbiosynthesiscomplementedtransSouthernanalysisrevealedrearrangementssurveyenvironmentalisolatesindicatedcorrelationlossphenotypesuggestingmechanismFullvirulencemicesupportedessentialrolecapsulepathogenesisIdentification1-like

Similar Articles

Cited By