From spectrum to space: the contribution of level difference cues to spatial receptive fields in the barn owl inferior colliculus.

David R Euston, Terry T Takahashi
Author Information
  1. David R Euston: Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA. euston@emailarizona.edu

Abstract

Space-specific neurons in the owl's inferior colliculus have spatial receptive fields (RFs) computed from interaural time (ITD) and level (ILD) differences. Because of the shape of the owl's head, these cues vary with frequency in a manner specific for each location. We sought to determine the contribution of ILD to spatial selectivity. We measured the normal spatial receptive fields of space-specific neurons using virtual sound sources (i.e., noises filtered to simulate external sound sources, presented using headphones). The virtual-source filters were then altered so that ITD was fixed while frequency-specific ILDs varied according to location in the usual manner. The resulting "ILD-alone" RF typically revealed a horizontal band of excitation that included the normal RF. Above and below, the neurons were inhibited. Interestingly, the maxima of ILD-alone RFs were generally outside the normal RF, suggesting that space-specific neurons are not optimally tuned to the ILD spectrum occurring at the normal RF location. Congruously, frequency-specific ILD tuning, assessed with tones, better matched the ILDs at the peak of the ILD-alone RF than those at the peak of the normal RF. The firing evoked from the normal RF may thus reflect the balance of excitatory and inhibitory inputs needed to appropriately restrict the receptive field. Frequency-specific ILD tuning curves were combined with measured head-filtering characteristics to predict responses to the frequency-specific ILDs at each location. The predicted ILD-alone RFs, which are based on a simple sum of frequency-specific inputs, accounted for 56% of the variance in our measured ILD-alone RFs.

References

  1. J Neurophysiol. 2000 Jul;84(1):435-50 [PMID: 10899217]
  2. J Neurosci. 1991 Mar;11(3):722-39 [PMID: 2002359]
  3. J Acoust Soc Am. 1992 Feb;91(2):1015-27 [PMID: 1556303]
  4. J Neurophysiol. 1993 Aug;70(2):667-76 [PMID: 8410166]
  5. J Comp Physiol A. 1989 Feb;164(5):637-44 [PMID: 2709344]
  6. J Neurophysiol. 1999 Jun;81(6):2833-51 [PMID: 10368401]
  7. Science. 1991 Jul 5;253(5015):85-7 [PMID: 2063209]
  8. J Neurosci. 1998 May 15;18(10):3929-42 [PMID: 9570820]
  9. Annu Rev Neurosci. 1995;18:19-43 [PMID: 7605060]
  10. J Neurosci. 1982 Sep;2(9):1177-94 [PMID: 7119872]
  11. J Neurosci. 1986 Dec;6(12):3413-22 [PMID: 3794779]
  12. J Acoust Soc Am. 1989 Feb;85(2):868-78 [PMID: 2926001]
  13. Q Rev Biophys. 1983 Aug;16(3):341-414 [PMID: 6366861]
  14. J Neurosci. 2000 Jan 15;20(2):862-77 [PMID: 10632616]
  15. J Neurosci. 1988 Aug;8(8):2665-76 [PMID: 3411346]
  16. J Neurosci. 1989 Jul;9(7):2591-605 [PMID: 2746340]
  17. Hear Res. 1997 Sep;111(1-2):22-30 [PMID: 9307308]
  18. J Comp Physiol A. 1999 Oct;185(4):305-21 [PMID: 10555267]
  19. Science. 2001 Apr 13;292(5515):249-52 [PMID: 11303092]
  20. J Neurosci. 1993 Nov;13(11):4589-608 [PMID: 8229186]
  21. J Neurosci. 1987 Oct;7(10):3105-16 [PMID: 3668618]
  22. Hear Res. 1994 Feb;73(1):67-84 [PMID: 8157508]
  23. J Neurophysiol. 1995 Feb;73(2):595-614 [PMID: 7760121]
  24. J Acoust Soc Am. 1997 Feb;101(2):1050-63 [PMID: 9035397]
  25. Science. 1978 May 19;200(4343):795-7 [PMID: 644324]
  26. J Neurosci. 1992 Nov;12(11):4381-90 [PMID: 1432100]
  27. J Neurosci. 1993 Sep;13(9):3647-68 [PMID: 7690063]
  28. J Neurosci. 1994 Jul;14(7):3985-97 [PMID: 8027757]
  29. J Neurosci. 1981 Jan;1(1):40-8 [PMID: 7346557]
  30. IEEE Trans Biomed Eng. 1968 Jul;15(3):169-79 [PMID: 5667803]
  31. Hear Res. 2000 Jun;144(1-2):73-88 [PMID: 10831867]
  32. J Acoust Soc Am. 1995 Mar;97(3):1764-76 [PMID: 7699158]
  33. J Comp Physiol A. 1989 Feb;164(5):629-36 [PMID: 2590278]
  34. J Acoust Soc Am. 1989 Feb;85(2):858-67 [PMID: 2926000]
  35. J Neurophysiol. 1978 Jul;41(4):870-84 [PMID: 681991]
  36. Science. 1999 May 7;284(5416):962-5 [PMID: 10320376]
  37. Hear Res. 1998 Apr;118(1-2):13-34 [PMID: 9606058]

Grants

  1. R01 DC003925/NIDCD NIH HHS
  2. T32 GM007257/NIGMS NIH HHS
  3. DC03925/NIDCD NIH HHS
  4. T32 GM07257/NIGMS NIH HHS

MeSH Term

Acoustic Stimulation
Animals
Auditory Threshold
Cues
Electrodes, Implanted
Electrophysiology
Inferior Colliculi
Loudness Perception
Neurons
Pitch Perception
Predictive Value of Tests
Reaction Time
Regression Analysis
Signal Processing, Computer-Assisted
Sound Localization
Space Perception
Strigiformes

Word Cloud

Created with Highcharts 10.0.0RFnormalILDneuronsspatialreceptiveRFslocationfrequency-specificILD-alonefieldsmeasuredILDsowl'sinferiorcolliculusITDlevelcuesmannercontributionspace-specificusingsoundsourcesspectrumtuningpeakinputsSpace-specificcomputedinterauraltimedifferencesshapeheadvaryfrequencyspecificsoughtdetermineselectivityvirtualienoisesfilteredsimulateexternalpresentedheadphonesvirtual-sourcefiltersalteredfixedvariedaccordingusualresulting"ILD-alone"typicallyrevealedhorizontalbandexcitationincludedinhibitedInterestinglymaximagenerallyoutsidesuggestingoptimallytunedoccurringCongruouslyassessedtonesbettermatchedfiringevokedmaythusreflectbalanceexcitatoryinhibitoryneededappropriatelyrestrictfieldFrequency-specificcurvescombinedhead-filteringcharacteristicspredictresponsespredictedbasedsimplesumaccounted56%variancespace:differencebarnowl

Similar Articles

Cited By