The local control of cytosolic Ca2+ as a propagator of CNS communication--integration of mitochondrial transport mechanisms and cellular responses.

P B Simpson
Author Information
  1. P B Simpson: Department of Pharmacology, Neuroscience Research Centre, Merck Sharp & Dohme Research Laboratories, Harlow, Essex, United Kingdom. peter_simpson@merck.com

Abstract

Ca2+ signals propagate in wave form along individual cells of the central nervous system (CNS) and through networks of connected cells of neuronal and multiple glial cell types. In order for wave fronts to convey information, signaling mechanisms are required that allow waves to propagate reproducibly and without decrement in signal strength over long distances. CNS Ca2+ waves are under specific integrated local control, made possible by interactions at local subcellular microdomains between endoplasmic reticulum and mitochondria. Active mitochondria located near the mouth of inositol trisphosphate receptor (InsP3R) channel clusters in glia take up Ca2+, which may prevent a buildup of Ca2+ around the InsP3R channel, thereby decreasing the rate of Ca2+-induced receptor inactivation, and prolonging channel open time. Mitochondria may amplify InsP3-dependent Ca2+ signals by a transient permeability transition in response to Ca2+ uptake into the mitochondrion. Other evidence suggests privileged access into mitochondria for Ca2+ entering neurons by glutamatergic receptor channels. This enables specific signal modulation as the Ca2+ wave is propagated into neurons, such that mitochondria located close to glutamate channels can prolong the neuronal cytosolic response time by successive uptake and release of Ca2+. Disruption of mitochondrial function deregulates the ability of CNS-derived cells to undergo normal Ca2+ signaling and wave propagation.

References

  1. J Neurosci. 1997 Oct 15;17(20):7817-30 [PMID: 9315902]
  2. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12579-83 [PMID: 7809081]
  3. Science. 1997 Feb 21;275(5303):1129-32 [PMID: 9027314]
  4. Prog Neurobiol. 1996 Jun;49(3):185-214 [PMID: 8878303]
  5. J Bioenerg Biomembr. 1994 Oct;26(5):543-53 [PMID: 7534761]
  6. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):5-9 [PMID: 8688451]
  7. J Neurosurg. 1997 Dec;87(6):916-20 [PMID: 9384404]
  8. J Physiol. 1999 Apr 1;516 ( Pt 1):1-17 [PMID: 10066918]
  9. J Neurosci. 1996 Sep 15;16(18):5688-97 [PMID: 8795624]
  10. J Biol Chem. 1995 Nov 17;270(46):27510-5 [PMID: 7499209]
  11. Glia. 1995 Jul;14(3):225-36 [PMID: 7591034]
  12. Am J Physiol. 1994 Aug;267(2 Pt 1):C313-39 [PMID: 8074170]
  13. Glia. 1998 Sep;24(1):97-107 [PMID: 9700493]
  14. Cell. 1995 Aug 11;82(3):415-24 [PMID: 7634331]
  15. Pharmacol Ther. 1998 Nov;80(2):203-29 [PMID: 9839772]
  16. J Neurosci. 1997 Mar 15;17(6):1981-92 [PMID: 9045727]
  17. Biochem J. 1997 Jul 1;325 ( Pt 1):239-47 [PMID: 9224652]
  18. J Neurobiol. 1994 Mar;25(3):265-80 [PMID: 8195790]
  19. J Biol Chem. 1996 May 3;271(18):10753-9 [PMID: 8631885]
  20. J Neurobiol. 1995 Oct;28(2):159-70 [PMID: 8537822]
  21. J Biol Chem. 1997 Sep 5;272(36):22654-61 [PMID: 9278423]
  22. Neuron. 1992 Jun;8(6):1101-8 [PMID: 1351732]
  23. Nature. 1994 Mar 3;368(6466):59-62 [PMID: 7906399]
  24. Glia. 1998 Dec;24(4):398-407 [PMID: 9814820]
  25. J Physiol. 1998 May 15;509 ( Pt 1):103-16 [PMID: 9547385]
  26. Curr Biol. 1994 Sep 1;4(9):807-10 [PMID: 7820550]
  27. Am J Physiol. 1994 Jan;266(1 Pt 1):C293-302 [PMID: 8304425]
  28. J Neurosci. 1995 Feb;15(2):1318-28 [PMID: 7869100]
  29. Mol Pharmacol. 1998 Jun;53(6):974-80 [PMID: 9614198]
  30. Biochim Biophys Acta. 1982 Sep 1;683(1):57-88 [PMID: 6291604]
  31. Biophys J. 1995 Nov;69(5):2139-53 [PMID: 8580358]
  32. J Biol Chem. 1996 Dec 27;271(52):33493-501 [PMID: 8969213]
  33. Science. 1997 Mar 14;275(5306):1643-8 [PMID: 9054358]
  34. Cell Calcium. 1995 Jan;17(1):53-64 [PMID: 7553781]
  35. J Exp Med. 1996 Apr 1;183(4):1293-5 [PMID: 8666886]
  36. Life Sci. 1994;54(24):1855-60 [PMID: 8196502]
  37. FEBS Lett. 1994 Jul 11;348(2):211-5 [PMID: 8034044]
  38. J Neurosci Res. 1998 Jun 15;52(6):672-83 [PMID: 9669316]
  39. Neuron. 1992 Mar;8(3):429-40 [PMID: 1347996]
  40. Nature. 1994 Jun 30;369(6483):744-7 [PMID: 7911978]
  41. Science. 1997 Feb 7;275(5301):844-7 [PMID: 9012354]
  42. Cell Calcium. 1998 Jun;23(6):423-32 [PMID: 9924634]
  43. J Neurosci. 1998 Jun 15;18(12):4570-87 [PMID: 9614233]
  44. Cell. 1997 Jun 27;89(7):1145-53 [PMID: 9215636]
  45. J Neurosci. 1991 Dec;11(12):3685-94 [PMID: 1720814]
  46. J Physiol. 1996 Dec 1;497 ( Pt 2):299-308 [PMID: 8961176]
  47. J Physiol. 1998 Apr 15;508 ( Pt 2):413-26 [PMID: 9508806]
  48. J Neurochem. 1997 Mar;68(3):1221-33 [PMID: 9048769]
  49. J Neurosci. 1997 Oct 1;17(19):7359-71 [PMID: 9295382]
  50. Science. 1994 Mar 25;263(5154):1768-71 [PMID: 8134839]
  51. Perspect Dev Neurobiol. 1994;2(3):205-15 [PMID: 7850353]
  52. Ciba Found Symp. 1995;188:175-89; discussion 189-94 [PMID: 7587616]
  53. J Bioenerg Biomembr. 1994 Oct;26(5):471-85 [PMID: 7896763]
  54. Neuron. 1996 Jan;16(1):219-28 [PMID: 8562086]
  55. Science. 1998 Jun 12;280(5370):1763-6 [PMID: 9624056]
  56. J Neurosci. 1995 Nov;15(11):6999-7011 [PMID: 7472456]
  57. Science. 1990 Jan 26;247(4941):470-3 [PMID: 1967852]
  58. J Neurosci. 1998 Jul 15;18(14):5151-9 [PMID: 9651198]
  59. Nat Neurosci. 1998 Oct;1(6):494-500 [PMID: 10196547]
  60. Science. 1993 Oct 29;262(5134):744-7 [PMID: 8235595]
  61. Glia. 1998 Sep;24(1):50-64 [PMID: 9700489]
  62. Brain Res Brain Res Rev. 1998 Mar;26(1):72-81 [PMID: 9600625]
  63. J Neurosci. 1999 Jan 15;19(2):520-8 [PMID: 9880572]
  64. Mol Cell Biochem. 1997 Sep;174(1-2):167-72 [PMID: 9309682]
  65. Microsc Res Tech. 1994 Feb 15;27(3):198-219 [PMID: 8204911]
  66. J Neurosci. 1994 Jul;14(7):4007-24 [PMID: 8027759]
  67. FEBS Lett. 1996 Sep 9;393(1):135-8 [PMID: 8804442]
  68. J Neurochem. 1997 Jun;68(6):2317-27 [PMID: 9166724]

MeSH Term

Animals
Biological Transport
Calcium
Calcium Signaling
Central Nervous System
Cytosol
Mitochondria

Chemicals

Calcium

Word Cloud

Created with Highcharts 10.0.0Ca2+wavemitochondriacellsCNSlocalreceptorchannelsignalspropagateneuronalsignalingmechanismswavessignalspecificcontrollocatedInsP3RmaytimeresponseuptakeneuronschannelscytosolicmitochondrialformalongindividualcentralnervoussystemnetworksconnectedmultipleglialcelltypesorderfrontsconveyinformationrequiredallowreproduciblywithoutdecrementstrengthlongdistancesintegratedmadepossibleinteractionssubcellularmicrodomainsendoplasmicreticulumActivenearmouthinositoltrisphosphateclustersgliatakepreventbuilduparoundtherebydecreasingrateCa2+-inducedinactivationprolongingopenMitochondriaamplifyInsP3-dependenttransientpermeabilitytransitionmitochondrionevidencesuggestsprivilegedaccessenteringglutamatergicenablesmodulationpropagatedcloseglutamatecanprolongsuccessivereleaseDisruptionfunctionderegulatesabilityCNS-derivedundergonormalpropagationpropagatorcommunication--integrationtransportcellularresponses

Similar Articles

Cited By