The coding of spatial location by single units in the lateral superior olive of the cat. II. The determinants of spatial receptive fields in azimuth.

Daniel J Tollin, Tom C T Yin
Author Information
  1. Daniel J Tollin: Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. tollin@physiology.wisc.edu

Abstract

The lateral superior olive (LSO) is one of the most peripheral nuclei in the auditory pathway to receive inputs from both ears, and its cells are sensitive to interaural level disparities (ILDs) when stimulated by sounds presented over earphones. It has, accordingly, long been hypothesized that the functional role of the LSO is to encode a correlate of ILDs, one of the acoustical cues to the spatial location of sound. In the companion paper, we used the virtual space (VS) technique to present over earphones stimuli containing all the acoustical cues to the location of broadband stimuli and measured the spatial receptive fields (SRFs) in azimuth of single LSO cells. The shapes of the SRFs were generally consistent with the ILD sensitivity of the cells (Tollin and Yin, 2002), but because the only variable under our control was azimuth, and not ILD directly, the precise cues responsible for the SRFs could not be unambiguously determined. Here, we test more directly the hypothesis that ILDs are the primary determinants of the SRFs in azimuth of LSO cells by digitally manipulating the head-related transfer functions used to create the VS stimuli by independently varying (or holding constant) in azimuth each of the primary localization cues in isolation while holding constant (or varying) the others. Our results support the classical view of the LSO that the form of the SRFs of the cells in azimuth is determined primarily by the ILDs in a small band of frequencies around the characteristic frequencies of the cells.

References

  1. J Comp Neurol. 1991 Aug 15;310(3):377-400 [PMID: 1723989]
  2. J Neurophysiol. 1995 Mar;73(3):1043-62 [PMID: 7608754]
  3. Brain Res. 1990 May 28;517(1-2):189-94 [PMID: 2375987]
  4. Hear Res. 1997 Mar;105(1-2):211-24 [PMID: 9083818]
  5. J Comp Neurol. 1989 Jan 15;279(3):382-96 [PMID: 2918077]
  6. J Neurophysiol. 1993 Aug;70(2):667-76 [PMID: 8410166]
  7. Hear Res. 1987;26(3):267-86 [PMID: 3583928]
  8. Exp Brain Res. 1983;52(3):385-99 [PMID: 6653700]
  9. J Neurophysiol. 1988 Jul;60(1):1-29 [PMID: 3404211]
  10. J Neurophysiol. 1999 Jun;81(6):2833-51 [PMID: 10368401]
  11. J Neurosci. 1996 Oct 15;16(20):6554-66 [PMID: 8815932]
  12. J Comp Neurol. 1985 Feb 8;232(2):261-85 [PMID: 3973093]
  13. Exp Brain Res. 1978 May 12;32(1):117-34 [PMID: 658183]
  14. Hear Res. 1983 May;10(2):203-15 [PMID: 6863155]
  15. Neuroscience. 1982;7(12):3031-52 [PMID: 6298659]
  16. J Neurosci. 1983 Jan;3(1):237-42 [PMID: 6822858]
  17. J Neurosci. 2002 Feb 15;22(4):1454-67 [PMID: 11850472]
  18. J Acoust Soc Am. 1989 Feb;85(2):868-78 [PMID: 2926001]
  19. J Neurophysiol. 1998 Jun;79(6):3127-42 [PMID: 9636113]
  20. J Acoust Soc Am. 1990 Feb;87(2):757-81 [PMID: 2307774]
  21. Anat Embryol (Berl). 1999 Feb;199(2):149-60 [PMID: 9930621]
  22. J Acoust Soc Am. 1996 Aug;100(2 Pt 1):1070-80 [PMID: 8759960]
  23. J Neurophysiol. 1966 Jul;29(4):684-97 [PMID: 5966430]
  24. J Neurophysiol. 1975 Sep;38(5):1037-48 [PMID: 1177003]
  25. J Neurophysiol. 1998 May;79(5):2416-31 [PMID: 9582217]
  26. J Neurophysiol. 2001 Aug;86(2):1043-6 [PMID: 11495972]
  27. J Neurophysiol. 1990 Aug;64(2):465-88 [PMID: 2213127]
  28. Hear Res. 1992 Mar;58(2):132-52 [PMID: 1568936]
  29. J Comp Neurol. 1993 May 8;331(2):245-60 [PMID: 8509501]
  30. Hear Res. 1994 Feb;73(1):67-84 [PMID: 8157508]
  31. J Neurophysiol. 1992 Oct;68(4):1151-9 [PMID: 1432074]
  32. J Neurophysiol. 1968 May;31(3):442-54 [PMID: 5687764]
  33. J Acoust Soc Am. 1973 Aug;54(2):365-72 [PMID: 4759008]
  34. J Neurophysiol. 1966 Mar;29(2):288-314 [PMID: 5927463]
  35. J Acoust Soc Am. 1967 Oct;42(4):794-805 [PMID: 6075565]
  36. J Neurophysiol. 1997 Sep;78(3):1222-36 [PMID: 9310414]
  37. Am J Physiol. 1959 Sep;197:527-36 [PMID: 13826000]
  38. J Neurophysiol. 1982 Mar;47(3):479-500 [PMID: 7069453]
  39. J Acoust Soc Am. 1995 Mar;97(3):1764-76 [PMID: 7699158]
  40. J Comp Neurol. 1986 May 22;247(4):457-76 [PMID: 3722446]
  41. J Acoust Soc Am. 1969 Oct;46(4):979-88 [PMID: 5824041]
  42. Brain Res. 1979 Nov 9;177(1):189-93 [PMID: 497821]
  43. J Acoust Soc Am. 1989 Feb;85(2):858-67 [PMID: 2926000]
  44. J Neurophysiol. 1969 Jul;32(4):613-36 [PMID: 5810617]
  45. J Neurosci. 1990 Nov;10(11):3494-506 [PMID: 2172478]
  46. Hear Res. 1998 Apr;118(1-2):13-34 [PMID: 9606058]
  47. J Comp Neurol. 1985 Aug 15;238(3):249-62 [PMID: 4044914]
  48. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11780-6 [PMID: 11050209]
  49. J Neurosci. 1988 Feb;8(2):682-700 [PMID: 3339433]

Grants

  1. DC02840/NIDCD NIH HHS
  2. P01 DC000116/NIDCD NIH HHS
  3. DC00116/NIDCD NIH HHS
  4. R01 DC002840/NIDCD NIH HHS
  5. F32 DC000376/NIDCD NIH HHS
  6. DC00376/NIDCD NIH HHS

MeSH Term

Acoustic Stimulation
Action Potentials
Animals
Auditory Pathways
Auditory Threshold
Cats
Cues
Microelectrodes
Neurons
Olivary Nucleus
Reproducibility of Results
Sound Localization
Space Perception

Word Cloud

Created with Highcharts 10.0.0cellsazimuthLSOSRFsILDscuesspatiallocationstimulilateralsuperioroliveoneearphonesacousticalusedVSreceptivefieldssingleILDdirectlydeterminedprimarydeterminantsvaryingholdingconstantfrequenciesperipheralnucleiauditorypathwayreceiveinputsearssensitiveinterauralleveldisparitiesstimulatedsoundspresentedaccordinglylonghypothesizedfunctionalroleencodecorrelatesoundcompanionpapervirtualspacetechniquepresentcontainingbroadbandmeasuredshapesgenerallyconsistentsensitivityTollinYin2002variablecontrolpreciseresponsibleunambiguouslytesthypothesisdigitallymanipulatinghead-relatedtransferfunctionscreateindependentlylocalizationisolationothersresultssupportclassicalviewformprimarilysmallbandaroundcharacteristiccodingunitscatII

Similar Articles

Cited By