Contribution of the Earthworm Lumbricus rubellus (Annelida, Oligochaeta) to the Establishment of Plasmids in Soil Bacterial Communities.

T. Thimm, A. Hoffmann, I. Fritz, C.C. Tebbe
Author Information
  1. T. Thimm: Institut für Agrarökologie, Bundesforschungsanstalt für Landwirtschaft (FAL), 38116 Braunschweig, Germany.

Abstract

The contribution of the earthworm Lumbricus rubellus in spreading plasmids from a nonindigenous bacterial species to the soil microbial community was studied with Escherichia coli strains as donor organisms. The selected donor strains harbored marker-gene tagged plasmids with different transfer properties and host ranges. Prototrophic benzoate degrading indigenous bacteria were analyzed as potential recipients. In filter-mating experiments, donor strains were mixed with bacterial cell consortia extracted from earthworm casts (feces) and incubated on nutrient agar at 28 degrees C. Transfer was detected with the broad host range IncP plasmid pRP4luc; with the IncQ plasmid, pSUP104luc, but only when it was present in a mobilizing donor strain; and with the transposon delivery vector pUTlux. No transfer was detected with the nonmobilizable pUCluc and the mobilizable pSUP202luc, both of narrow host range. In microcosm studies with E. coli inoculated soil incubated at 12 degrees C, transconjugants were only detected in casts of L. rubellus but not in bulk soil, indicating that the gut passage was a precondition for plasmid transfer. Plasmid pRP4luc was transferred at higher frequencies than detected in filter mating. Results of the filter matings were confirmed except that transfer of pUTlux could not be detected. The majority of transconjugants isolated in this study lost their acquired plasmid upon further cultivation. Stable transconjugants, however, were obtained and identified at the 16S rRNA gene level as members of the b- and g-subgroups of Proteobacteria. Incubation of E. coli and selected transconjugants in soil microcosms with L. rubellus demonstrated that the gut passage resulted in a slight but significant reduction of ingested cells. In contrast to the donor strains, however, the population sizes of transconjugants in bulk soil and in casts did not decrease over time. This demonstrated that the transferred plasmids had established themselves in the soil microbial community.

References

  1. Appl Environ Microbiol. 1990 Aug;56(8):2471-9 [PMID: 2206101]
  2. Appl Environ Microbiol. 1993 Jul;59(7):2257-63 [PMID: 16348998]
  3. FEMS Microbiol Lett. 1999 May 1;174(1):9-17 [PMID: 10234817]
  4. J Bacteriol. 1990 Nov;172(11):6568-72 [PMID: 2172217]
  5. Mol Gen Genet. 1981;182(3):505-7 [PMID: 6946274]
  6. FEMS Microbiol Lett. 1992 Jun 15;72(3):227-33 [PMID: 1354195]
  7. J Mol Biol. 1969 May 14;41(3):459-72 [PMID: 4896022]
  8. Annu Rev Microbiol. 1987;41:77-101 [PMID: 3318684]
  9. FEMS Microbiol Ecol. 2000 Jan 1;31(1):39-45 [PMID: 10620717]
  10. Plasmid. 1999 Sep;42(2):73-91 [PMID: 10489325]
  11. Appl Environ Microbiol. 1996 Jul;62(7):2621-8 [PMID: 8779598]
  12. Zentralbl Mikrobiol. 1988;143(6):425-33 [PMID: 3066059]
  13. Appl Environ Microbiol. 1994 Dec;60(12):4273-8 [PMID: 7811066]
  14. Appl Environ Microbiol. 1998 Jul;64(7):2652-9 [PMID: 9647844]
  15. Appl Environ Microbiol. 1988 Jan;54(1):115-7 [PMID: 3345074]
  16. Appl Environ Microbiol. 1997 Jan;63(1):213-9 [PMID: 16535486]
  17. Appl Environ Microbiol. 1991 Dec;57(12):3482-8 [PMID: 16348599]
  18. Microbiol Rev. 1989 Dec;53(4):491-516 [PMID: 2687680]
  19. Recomb DNA Tech Bull. 1983 Sep;6(3):98-100 [PMID: 6356238]
  20. Appl Environ Microbiol. 1990 May;56(5):1492-3 [PMID: 16348197]
  21. Zentralbl Mikrobiol. 1988;143(6):415-23 [PMID: 3223110]
  22. J Bacteriol. 1990 Nov;172(11):6557-67 [PMID: 2172216]
  23. Appl Environ Microbiol. 1994 Nov;60(11):4053-8 [PMID: 7993092]
  24. Appl Environ Microbiol. 1990 Jun;56(6):1608-14 [PMID: 2383006]
  25. Methods Mol Biol. 2000;132:365-86 [PMID: 10547847]
  26. J Bacteriol. 1985 Jul;163(1):324-30 [PMID: 3891734]
  27. Antonie Van Leeuwenhoek. 1998 Jan;73(1):69-77 [PMID: 9602280]
  28. FEMS Microbiol Ecol. 1999 Oct 1;30(2):125-135 [PMID: 10508937]
  29. Gene. 1985;33(1):103-19 [PMID: 2985470]
  30. Infect Immun. 1998 Jul;66(7):3198-207 [PMID: 9632586]
  31. Appl Environ Microbiol. 1999 Nov;65(11):5139-41 [PMID: 10543833]
  32. Microb Releases. 1993 Dec;2(3):135-41 [PMID: 8111533]
  33. J Biotechnol. 1998 Sep 17;64(1):75-90 [PMID: 9823660]
  34. Appl Environ Microbiol. 1995 Mar;61(3):1039-44 [PMID: 16534954]
  35. Appl Environ Microbiol. 1997 May;63(5):1980-6 [PMID: 16535608]
  36. J Clin Microbiol. 1999 Nov;37(11):3594-600 [PMID: 10523559]
  37. Appl Environ Microbiol. 1997 Feb;63(2):679-86 [PMID: 16535521]
  38. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  39. Appl Environ Microbiol. 1996 Feb;62(2):515-21 [PMID: 8593052]

Word Cloud

Created with Highcharts 10.0.0soildonordetectedtransconjugantsrubellusstrainstransferplasmidplasmidscolihostcastsearthwormLumbricusbacterialmicrobialcommunityselectedincubateddegreesCrangepRP4lucpUTluxELbulkgutpassagetransferredfilterhoweverdemonstratedcontributionspreadingnonindigenousspeciesstudiedEscherichiaorganismsharboredmarker-genetaggeddifferentpropertiesrangesPrototrophicbenzoatedegradingindigenousbacteriaanalyzedpotentialrecipientsfilter-matingexperimentsmixedcellconsortiaextractedfecesnutrientagar28TransferbroadIncPIncQpSUP104lucpresentmobilizingstraintransposondeliveryvectornonmobilizablepUClucmobilizablepSUP202lucnarrowmicrocosmstudiesinoculated12indicatingpreconditionPlasmidhigherfrequenciesmatingResultsmatingsconfirmedexceptmajorityisolatedstudylostacquireduponcultivationStableobtainedidentified16SrRNAgenelevelmembersb-g-subgroupsProteobacteriaIncubationmicrocosmsresultedslightsignificantreductioningestedcellscontrastpopulationsizesdecreasetimeestablishedContributionEarthwormAnnelidaOligochaetaEstablishmentPlasmidsSoilBacterialCommunities

Similar Articles

Cited By