Two ras pathways in fission yeast are differentially regulated by two ras guanine nucleotide exchange factors.

Piyi Papadaki, Véronique Pizon, Brian Onken, Eric C Chang
Author Information
  1. Piyi Papadaki: Biology Department, New York University, New York, New York 10003-6688, USA.

Abstract

How a given Ras prreotein coordinates multiple signaling inputs and outputs is a fundamental issue of signaling specificity. Schizosaccharomyces pombe contains one Ras, Ras1, that has two distinct outputs. Ras1 activates Scd1, a presumptive guanine nucleotide exchange factor (GEF) for Cdc42, to control morphogenesis and chromosome segregation, and Byr2, a component of a mitogen-activated protein kinase cascade, to control mating. So far there is only one established Ras1 GEF, Ste6. Paradoxically, ste6 null (ste6 Delta) mutants are sterile but normal in cell morphology. This suggests that Ste6 specifically activates the Ras1-Byr2 pathway and that there is another GEF capable of activating the Scd1 pathway. We thereby characterized a potential GEF, Efc25. Genetic data place Efc25 upstream of the Ras1-Scd1, but not the Ras1-Byr2, pathway. Like ras1 Delta and scd1 Delta, efc25 Delta is synthetically lethal with a deletion in tea1, a critical element for cell polarity control. Using truncated proteins, we showed that the C-terminal GEF domain of Efc25 is essential for function and regulated by the N terminus. We conclude that Efc25 acts as a Ras1 GEF specific for the Scd1 pathway. While ste6 expression is induced during mating, efc25 expression is constitutive. Moreover, Efc25 overexpression renders cells hyperelongated and sterile; the latter can be rescued by activated Ras1. This suggests that Efc25 can recruit Ras1 to selectively activate Scd1 at the expense of Byr2. Reciprocally, Ste6 overexpression can block Scd1 activation. We propose that external signals can partly segregate two Ras1 pathways by modulating GEF expression and that GEFs can influence how Ras is coupled to specific effectors.

References

  1. Biochemistry. 1999 Oct 5;38(40):13252-62 [PMID: 10529198]
  2. Mol Cell Biol. 1999 Dec;19(12):8066-74 [PMID: 10567532]
  3. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14370-5 [PMID: 11121040]
  4. Mol Cell Biol. 1994 Jan;14(1):50-8 [PMID: 8264618]
  5. Genetics. 2000 Nov;156(3):995-1004 [PMID: 11063680]
  6. Genetics. 2000 Jun;155(2):611-22 [PMID: 10835385]
  7. Gene. 1997 Jun 3;191(2):191-5 [PMID: 9218719]
  8. EMBO J. 1986 Nov;5(11):2963-71 [PMID: 16453723]
  9. Curr Opin Cell Biol. 2000 Apr;12(2):157-65 [PMID: 10712923]
  10. Nature. 1990 Mar 22;344(6264):355-7 [PMID: 2107403]
  11. Science. 1998 May 15;280(5366):1082-6 [PMID: 9582122]
  12. J Biol Chem. 1998 Jan 16;273(3):1782-7 [PMID: 9430727]
  13. Mol Cell Biol. 1991 Jul;11(7):3554-63 [PMID: 2046669]
  14. Mol Cell Biol. 1993 Mar;13(3):1345-52 [PMID: 8441380]
  15. Mol Gen Genet. 1988 Dec;215(1):26-31 [PMID: 3071741]
  16. Gene. 1997 Jul 9;193(2):203-10 [PMID: 9256078]
  17. J Biol Chem. 1998 Jul 3;273(27):16782-6 [PMID: 9642235]
  18. Cell. 1994 Oct 7;79(1):131-41 [PMID: 7923372]
  19. Trends Cell Biol. 2000 Apr;10(4):147-54 [PMID: 10740269]
  20. Nature. 1998 Jul 23;394(6691):337-43 [PMID: 9690470]
  21. Genetics. 2000 Apr;154(4):1473-84 [PMID: 10747046]
  22. Curr Biol. 1998 Aug 27;8(17):963-6 [PMID: 9742398]
  23. Trends Biochem Sci. 1993 Aug;18(8):273-5 [PMID: 8236435]
  24. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):517-22 [PMID: 9892665]
  25. J Cell Sci. 1994 Dec;107 ( Pt 12):3635-42 [PMID: 7706412]
  26. Gene. 1993 Jan 15;123(1):127-30 [PMID: 8422996]
  27. Nature. 1995 Aug 10;376(6540):524-7 [PMID: 7637786]
  28. Nature. 1998 Apr 23;392(6678):828-31 [PMID: 9572143]
  29. Nature. 2002 Feb 21;415(6874):871-80 [PMID: 11859360]
  30. Nucleic Acids Res. 1990 May 25;18(10):3091-2 [PMID: 2190191]
  31. Cell. 1997 Jun 13;89(6):939-49 [PMID: 9200612]
  32. J Cell Sci. 1998 Apr;111 ( Pt 7):867-76 [PMID: 9490631]
  33. J Biol Chem. 1999 Mar 5;274(10):6047-50 [PMID: 10037684]

Grants

  1. R01 CA090464/NCI NIH HHS
  2. CA90464/NCI NIH HHS

MeSH Term

ATP-Binding Cassette Transporters
Cell Cycle Proteins
Fungal Proteins
Gene Deletion
Guanine Nucleotide Exchange Factors
MAP Kinase Kinase Kinases
Mitogen-Activated Protein Kinases
Protein Structure, Tertiary
Proto-Oncogene Proteins
Schizosaccharomyces
Schizosaccharomyces pombe Proteins
Signal Transduction
ras Proteins

Chemicals

ATP-Binding Cassette Transporters
Cell Cycle Proteins
Efc25 protein, S pombe
Fungal Proteins
Guanine Nucleotide Exchange Factors
Proto-Oncogene Proteins
STE6 protein, S pombe
Schizosaccharomyces pombe Proteins
scd1 protein, S pombe
Mitogen-Activated Protein Kinases
BYR2 protein, S pombe
MAP Kinase Kinase Kinases
Ras1 protein, S pombe
ras Proteins

Word Cloud

Created with Highcharts 10.0.0Ras1GEFEfc25Scd1canDeltapathwayRastwocontrolSte6ste6expressionsignalingoutputsoneactivatesguaninenucleotideexchangeByr2matingsterilecellsuggestsRas1-Byr2efc25regulatedspecificoverexpressionpathwaysrasgivenprreoteincoordinatesmultipleinputsfundamentalissuespecificitySchizosaccharomycespombecontainsdistinctpresumptivefactorCdc42morphogenesischromosomesegregationcomponentmitogen-activatedproteinkinasecascadefarestablishedParadoxicallynullmutantsnormalmorphologyspecificallyanothercapableactivatingtherebycharacterizedpotentialGeneticdataplaceupstreamRas1-Scd1Likeras1scd1syntheticallylethaldeletiontea1criticalelementpolarityUsingtruncatedproteinsshowedC-terminaldomainessentialfunctionNterminusconcludeactsinducedconstitutiveMoreoverrenderscellshyperelongatedlatterrescuedactivatedrecruitselectivelyactivateexpenseReciprocallyblockactivationproposeexternalsignalspartlysegregatemodulatingGEFsinfluencecoupledeffectorsTwofissionyeastdifferentiallyfactors

Similar Articles

Cited By