Photochemical internalisation: a novel drug delivery system.

Pål Kristian Selbo, Anders Høgset, Lina Prasmickaite, Kristian Berg
Author Information
  1. Pål Kristian Selbo: Department of Biophysics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway. p.k.selbo@labmed.uio.no

Abstract

The present report reviews a number of recently published papers on a novel technology for the cytosolic delivery of macromolecules named photochemical internalisation (PCI). PCI is based upon the light activation of a drug (a photosensitizer) specifically located in the membrane of endocytic vesicles. Light which is absorbed by the photosensitizer induces the formation of reactive oxygen species, of which singlet oxygen ((1)O(2)) is the predominant form. Singlet oxygen oxidizes biomolecules in the membranes of endosomes and lysosomes, resulting in a subsequent release of the contents of these compartments into the cytosol. Photosensitizers have a higher affinity for tumour tissues than for most normal tissues and are used in photodynamic therapy of various types of cancers. We have taken advantage of the PCI strategy to enhance the delivery of a variety of macromolecules, including ribosome-inactivating toxins, an immunotoxin, horse radish peroxidase, a ras peptide, RNA, oligonucleotides and protein encoding DNA, to the cytosol. Normally, a major intracellular barrier to the application of therapeutically interesting peptides and proteins or the application of DNA and RNA in gene therapy is the degradation of the macromolecules in the endocytic vesicles after uptake by endocytosis. Therefore, a photochemically induced rupture of endocytic vesicles and the subsequent cytosolic release of the macromolecules aids these molecules in escaping attack by the lysosomal hydrolases, thereby maintaining their biological activity. Thus, PCI represents a novel principle for the cytosolic delivery of biologically active macromolecules which overcomes the pivotal intracellular barrier of endosomes and lysosomes. In addition to being utilised as a new site-specific cancer therapy method, PCI can also be applied as a research tool for macromolecule delivery both in vitro and in vivo.

MeSH Term

Animals
Antineoplastic Agents
Cell Membrane Permeability
Cytosol
Drug Delivery Systems
Endocytosis
Endosomes
Fluorescent Dyes
Genetic Therapy
Immunoconjugates
Indoles
Intracellular Membranes
Lysosomes
Mice
Molecular Structure
Organometallic Compounds
Photochemistry
Photosensitizing Agents
Plant Proteins
Porphyrins
Proteins
Reactive Oxygen Species
Ribosome Inactivating Proteins, Type 1
Ribosomes
Singlet Oxygen
Structure-Activity Relationship

Chemicals

Antineoplastic Agents
Fluorescent Dyes
Immunoconjugates
Indoles
Organometallic Compounds
Photosensitizing Agents
Plant Proteins
Porphyrins
Proteins
Reactive Oxygen Species
Ribosome Inactivating Proteins, Type 1
Singlet Oxygen
aluminum phthalocyanine disulfonate
GEL protein, Gelonium multiflorum

Word Cloud

Created with Highcharts 10.0.0deliverymacromoleculesPCInovelcytosolicendocyticvesiclesoxygentherapydrugphotosensitizerendosomeslysosomessubsequentreleasecytosoltissuesRNADNAintracellularbarrierapplicationpresentreportreviewsnumberrecentlypublishedpaperstechnologynamedphotochemicalinternalisationbaseduponlightactivationspecificallylocatedmembraneLightabsorbedinducesformationreactivespeciessinglet1O2predominantformSingletoxidizesbiomoleculesmembranesresultingcontentscompartmentsPhotosensitizershigheraffinitytumournormalusedphotodynamicvarioustypescancerstakenadvantagestrategyenhancevarietyincludingribosome-inactivatingtoxinsimmunotoxinhorseradishperoxidaseraspeptideoligonucleotidesproteinencodingNormallymajortherapeuticallyinterestingpeptidesproteinsgenedegradationuptakeendocytosisThereforephotochemicallyinducedruptureaidsmoleculesescapingattacklysosomalhydrolasestherebymaintainingbiologicalactivityThusrepresentsprinciplebiologicallyactiveovercomespivotaladditionutilisednewsite-specificcancermethodcanalsoappliedresearchtoolmacromoleculevitrovivoPhotochemicalinternalisation:system

Similar Articles

Cited By