Cooperative behavior of molecular motors.

Karen C Vermeulen, Ger J M Stienen, Christoph F Schmid
Author Information
  1. Karen C Vermeulen: Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, The Netherlands.

Abstract

Both experimental evidence and theoretical models for collective effects in the working mechanism of molecular motors are reviewed at three different levels, namely: (i) interaction between the two heads of double-headed motors, particularly in processive motors like kinesin, myosin V and myosin VI, (ii) cooperative regulation of muscle thin filaments by accessory proteins and the Ca2+ level, and (iii) collective dynamic effects stemming from the mechanical coupling of molecular motors within macroscopic structures such as muscle thick filaments or axonemes. We aim to bridge the gap between structural information at the molecular level and physiological data with accompanying specific models on the one hand, and general stochastic physical models for the action of molecular motors on the other hand. An underlying assumption is that while, ultimately, the function of molecular motors will be explainable by a quantitative description of specific intramolecular dynamics and intermolecular interactions, for some coarse grained larger scale dynamic features it will be sufficient and illuminating to construct physical models that are simplified to the bare essentials.

References

  1. Biophys J. 1998 Sep;75(3):1439-45 [PMID: 9726945]
  2. Nature. 1995 Feb 23;373(6516):671-6 [PMID: 7854446]
  3. J Cell Sci. 2000 Nov;113 Pt 21:3681-2 [PMID: 11034894]
  4. Biophys J. 2001 Aug;81(2):1083-92 [PMID: 11463649]
  5. J Cell Biol. 1998 Mar 23;140(6):1395-405 [PMID: 9508772]
  6. Nature. 1993 Oct 21;365(6448):721-7 [PMID: 8413650]
  7. Q Rev Biophys. 1969 Nov;2(4):351-84 [PMID: 4935801]
  8. Proc Natl Acad Sci U S A. 1988 May;85(9):3265-9 [PMID: 2966401]
  9. FASEB J. 1998 Jul;12(10):761-71 [PMID: 9657517]
  10. Biophys J. 2000 Oct;79(4):1731-6 [PMID: 11023881]
  11. J Biol Chem. 2000 Sep 8;275(36):27587-93 [PMID: 10864931]
  12. J Mol Biol. 1984 Dec 5;180(2):379-84 [PMID: 6542594]
  13. Physiol Rev. 2000 Apr;80(2):853-924 [PMID: 10747208]
  14. J Muscle Res Cell Motil. 1989 Jun;10(3):181-96 [PMID: 2527246]
  15. Proc Natl Acad Sci U S A. 1980 May;77(5):2616-20 [PMID: 6930656]
  16. Phys Rev Lett. 2001 Sep 3;87(10):108101 [PMID: 11531504]
  17. Biophys J. 1998 Aug;75(2):926-37 [PMID: 9675193]
  18. Trends Cell Biol. 2001 Dec;11(12 ):477-82 [PMID: 11719052]
  19. Circ Res. 2002 Jan 11;90(1):59-65 [PMID: 11786519]
  20. Circ Res. 1998 Sep 7;83(5):471-80 [PMID: 9734469]
  21. J Cell Sci. 2000 Oct;113 Pt 19:3353-4 [PMID: 10984423]
  22. J Muscle Res Cell Motil. 2001;22(5):415-23 [PMID: 11964067]
  23. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3186-90 [PMID: 10627230]
  24. J Cell Biol. 1992 Feb;116(4):957-65 [PMID: 1734025]
  25. Curr Biol. 1997 Feb 1;7(2):R112-8 [PMID: 9081660]
  26. Nat Rev Mol Cell Biol. 2001 Sep;2(9):669-77 [PMID: 11533724]
  27. Biophys J. 1998 Feb;74(2 Pt 1):1074-85 [PMID: 9533719]
  28. Nature. 1995 Nov 9;378(6553):209-12 [PMID: 7477328]
  29. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12 ):6597-602 [PMID: 10359757]
  30. Biochemistry. 1997 Nov 4;36(44):13449-54 [PMID: 9354612]
  31. Pflugers Arch. 1985 Sep;405(1):19-23 [PMID: 2414721]
  32. J Mol Biol. 1987 Jun 20;195(4):885-96 [PMID: 3656437]
  33. Nature. 1998 Jun 18;393(6686):711-4 [PMID: 9641685]
  34. J Biol Chem. 1986 Oct 15;261(29):13632-6 [PMID: 2944885]
  35. J Cell Sci Suppl. 1991;14 :135-8 [PMID: 1832166]
  36. Nature. 1989 Nov 9;342(6246):154-8 [PMID: 2530455]
  37. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):339-43 [PMID: 1530889]
  38. News Physiol Sci. 2001 Feb;16:5-10 [PMID: 11390938]
  39. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6865-9 [PMID: 8041710]
  40. J Exp Biol. 2000 Sep;203(Pt 18):2713-22 [PMID: 10952872]
  41. Science. 2002 Feb 1;295(5556):844-8 [PMID: 11823639]
  42. Nature. 1994 Mar 10;368(6467):113-9 [PMID: 8139653]
  43. Prog Biophys Biophys Chem. 1957;7:255-318 [PMID: 13485191]
  44. Nat Cell Biol. 2002 Jan;4(1):59-65 [PMID: 11740494]
  45. Biophys J. 1987 Aug;52(2):215-20 [PMID: 3663829]
  46. Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):529-38 [PMID: 10836506]
  47. J Biol Chem. 2001 Jun 8;276(23):20245-51 [PMID: 11262388]
  48. Biophys J. 2002 Mar;82(3):1677-81 [PMID: 11898795]
  49. Biophys J. 1999 Aug;77(2):1003-16 [PMID: 10423445]
  50. Cell. 1997 Dec 26;91(7):985-94 [PMID: 9428521]
  51. Proc Natl Acad Sci U S A. 1990 Jan;87(1):414-8 [PMID: 2136951]
  52. Biophys J. 1999 Feb;76(2):985-92 [PMID: 9916029]
  53. J Biol Chem. 1992 Oct 5;267(28):20497-506 [PMID: 1400367]
  54. Biophys J. 2001 May;80(5):2338-49 [PMID: 11325734]
  55. J Gen Physiol. 2001 Feb;117(2):133-48 [PMID: 11158166]
  56. Nature. 1999 Aug 5;400(6744):590-3 [PMID: 10448864]
  57. Science. 1999 Feb 19;283(5405):1152-7 [PMID: 10024239]
  58. Biophys J. 1997 Jan;72(1):254-62 [PMID: 8994610]
  59. Biophys J. 1999 May;76(5):2664-72 [PMID: 10233080]
  60. Annu Rev Biochem. 1999;68:687-728 [PMID: 10872464]
  61. J Cell Biol. 1991 Sep;114(6):1201-15 [PMID: 1894694]
  62. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9482-6 [PMID: 10944217]
  63. Nature. 1991 Jul 25;352(6333):352-4 [PMID: 1852212]
  64. Biophys J. 1993 Aug;65(2):693-701 [PMID: 8218897]
  65. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6775-9 [PMID: 8692894]
  66. J Physiol. 1991 Jan;432:639-80 [PMID: 1886072]
  67. Cell Motil Cytoskeleton. 1995;32(2):136-44 [PMID: 8681396]
  68. Biophys J. 1980 Feb;29(2):195-227 [PMID: 6455168]
  69. Nature. 1995 Feb 23;373(6516):718-21 [PMID: 7854458]
  70. Nat New Biol. 1972 Jul 26;238(82):97-101 [PMID: 4261616]
  71. Biophys J. 1995 Apr;68(4 Suppl):163S-166S; discussion 166S-167S [PMID: 7787060]
  72. Phys Rev Lett. 1995 Jul 17;75(3):374-377 [PMID: 10060005]
  73. J Mol Biol. 1997 Feb 14;266(1):8-14 [PMID: 9054965]
  74. J Cell Biol. 1993 Jun;121(6):1357-68 [PMID: 8509455]
  75. Biophys J. 1995 Aug;69(2):524-37 [PMID: 8527667]
  76. Biophys J. 1995 Apr;68(4 Suppl):202S-210S; discussion 210S-211S [PMID: 7787069]

MeSH Term

Animals
Humans
Models, Biological
Molecular Motor Proteins

Chemicals

Molecular Motor Proteins

Word Cloud

Created with Highcharts 10.0.0motorsmolecularmodelscollectiveeffectsmyosinmusclefilamentsleveldynamicspecifichandphysicalwillexperimentalevidencetheoreticalworkingmechanismreviewedthreedifferentlevelsnamely:interactiontwoheadsdouble-headedparticularlyprocessivelikekinesinVVIiicooperativeregulationthinaccessoryproteinsCa2+iiistemmingmechanicalcouplingwithinmacroscopicstructuresthickaxonemesaimbridgegapstructuralinformationphysiologicaldataaccompanyingonegeneralstochasticactionunderlyingassumptionultimatelyfunctionexplainablequantitativedescriptionintramoleculardynamicsintermolecularinteractionscoarsegrainedlargerscalefeaturessufficientilluminatingconstructsimplifiedbareessentialsCooperativebehavior

Similar Articles

Cited By