The evolution of fungus-growing termites and their mutualistic fungal symbionts.

Duur K Aanen, Paul Eggleton, Corinne Rouland-Lefevre, Tobias Guldberg-Froslev, Soren Rosendahl, Jacobus J Boomsma
Author Information
  1. Duur K Aanen: Department of Population Ecology, Zoological Institute, University of Copenhagen, Universitetsparken 15, Denmark. dkaanen@zi.ku.dk

Abstract

We have estimated phylogenies of fungus-growing termites and their associated mutualistic fungi of the genus Termitomyces using Bayesian analyses of DNA sequences. Our study shows that the symbiosis has a single African origin and that secondary domestication of other fungi or reversal of mutualistic fungi to a free-living state has not occurred. Host switching has been frequent, especially at the lower taxonomic levels, and nests of single termite species can have different symbionts. Data are consistent with horizontal transmission of fungal symbionts in both the ancestral state of the mutualism and most of the extant taxa. Clonal vertical transmission of fungi, previously shown to be common in the genus Microtermes (via females) and in the species Macrotermes bellicosus (via males) [Johnson, R. A., Thomas, R. J., Wood, T. G. & Swift, M. J. (1981) J. Nat. Hist. 15, 751-756], is derived with two independent origins. Despite repeated host switching, statistical tests taking phylogenetic uncertainty into account show a significant congruence between the termite and fungal phylogenies, because mutualistic interactions at higher taxonomic levels show considerable specificity. We identify common characteristics of fungus-farming evolution in termites and ants, which apply despite the major differences between these two insect agricultural systems. We hypothesize that biparental colony founding may have constrained the evolution of vertical symbiont transmission in termites but not in ants where males die after mating.

References

  1. Mol Ecol. 2002 Aug;11(8):1565-72 [PMID: 12144675]
  2. Science. 1998 Sep 25;281(5385):2034-8 [PMID: 9748164]
  3. Am Nat. 2002 Oct;160 Suppl 4:S67-98 [PMID: 18707454]
  4. Bioinformatics. 2001 Aug;17(8):754-5 [PMID: 11524383]
  5. Evolution. 2001 Oct;55(10):1980-91 [PMID: 11761059]
  6. Mol Phylogenet Evol. 2002 Mar;22(3):423-9 [PMID: 11884167]
  7. Bioinformatics. 1998;14(9):817-8 [PMID: 9918953]
  8. Mol Phylogenet Evol. 2002 Jun;23(3):357-400 [PMID: 12099793]
  9. Mol Biol Evol. 1993 May;10(3):512-26 [PMID: 8336541]
  10. Genetics. 1993 Jan;133(1):97-117 [PMID: 8417993]
  11. Mol Ecol. 2002 Feb;11(2):191-5 [PMID: 11856421]
  12. Cladistics. 1990 Jun;6(2):119-136 [PMID: 34933509]
  13. Syst Biol. 2000 Jun;49(2):278-305 [PMID: 12118409]
  14. Cladistics. 1992 Sep;8(3):275-287 [PMID: 34929922]
  15. Q Rev Biol. 2001 Jun;76(2):169-97 [PMID: 11409051]
  16. Science. 2001 Dec 14;294(5550):2348-51 [PMID: 11743200]
  17. Science. 1994 Dec 9;266(5191):1691-4 [PMID: 17775630]

MeSH Term

Animals
Basidiomycota
DNA
Female
Isoptera
Phylogeny
Symbiosis

Chemicals

DNA

Word Cloud

Created with Highcharts 10.0.0termitesmutualisticfungisymbiontstransmissionfungalJevolutionphylogeniesfungus-growinggenussinglestateswitchingtaxonomiclevelstermitespeciesverticalcommonviamalesRtwoshowantsestimatedassociatedTermitomycesusingBayesiananalysesDNAsequencesstudyshowssymbiosisAfricanoriginsecondarydomesticationreversalfree-livingoccurredHostfrequentespeciallylowernestscandifferentDataconsistenthorizontalancestralmutualismextanttaxaClonalpreviouslyshownMicrotermesfemalesMacrotermesbellicosus[JohnsonAThomasWoodTG&SwiftM1981NatHist15751-756]derivedindependentoriginsDespiterepeatedhoststatisticalteststakingphylogeneticuncertaintyaccountsignificantcongruenceinteractionshigherconsiderablespecificityidentifycharacteristicsfungus-farmingapplydespitemajordifferencesinsectagriculturalsystemshypothesizebiparentalcolonyfoundingmayconstrainedsymbiontdiemating

Similar Articles

Cited By