Mechanisms of staurosporine induced apoptosis in a human corneal endothelial cell line.

G Thuret, C Chiquet, S Herrag, J-M Dumollard, D Boudard, J Bednarz, L Campos, P Gain
Author Information
  1. G Thuret: Cell death and neoplasia laboratory, EA 3063, University of Saint-Etienne, France.

Abstract

BACKGROUND: Apoptosis very probably plays a key part in endothelial cell loss during corneal storage in organ culture as well as hypothermic storage. However, the mechanisms underlying endothelial apoptosis are poorly understood. The response of a human corneal endothelial cell (HCEC) line to staurosporine, a known inducer of apoptosis, was investigated to gain insights into the intracellular modulators that participate in endothelial cell death.
METHODS: Immortalised HCECs were studied after 3, 6, 12, and 24 hours of incubation with 0.2 micro M staurosporine. Cell shedding was monitored. Hoechst 33342 fluorescent DNA staining combined with propidium iodide was used for apoptosis/necrosis quantification and morphological examination. The caspase-3 active form was assessed using western blot, proteolytic activity detection, and immunocytochemistry. The cleaved form of poly(ADP-ribose) polymerase (PARP) was assessed using immunocytochemistry and western blot. The ultrastructural features of cells were screened after 12 hours with staurosporine or vehicle.
RESULTS: The specific apoptotic nature of staurosporine induced HCEC death was confirmed. The ultrastructural features of staurosporine treated cells were typical of apoptosis. HCEC shedding and DNA condensation increased with time. Caspase-3 activity was detected as early as 3 hours after exposure with staurosporine, peaking at 12 hours of incubation. The presence of cleaved PARP after 3 hours confirmed caspase-3 activation.
CONCLUSIONS: These data suggest strongly that HCEC cell death induced by staurosporine is apoptosis. The main consequence of HCEC apoptosis is shedding. Staurosporine induced apoptosis of endothelial cells involves activation of caspase-3, and could be a useful model to study strategies of cell death inhibition.

References

  1. Br J Ophthalmol. 2001 Aug;85(8):996-1000 [PMID: 11466261]
  2. Invest Ophthalmol Vis Sci. 2000 Aug;41(9):2501-5 [PMID: 10937560]
  3. Invest Ophthalmol Vis Sci. 2000 Sep;41(10):2887-93 [PMID: 10967041]
  4. Invest Ophthalmol Vis Sci. 2001 Mar;42(3):642-52 [PMID: 11222522]
  5. Invest Ophthalmol Vis Sci. 2001 Jul;42(8):1757-61 [PMID: 11431439]
  6. Int J Biochem Cell Biol. 1997 Mar;29(3):393-6 [PMID: 9202418]
  7. J Histochem Cytochem. 1997 Jul;45(7):923-34 [PMID: 9212818]
  8. Biochem Biophys Res Commun. 1997 Jul 9;236(1):194-8 [PMID: 9223451]
  9. Curr Opin Cell Biol. 1997 Oct;9(5):701-6 [PMID: 9330874]
  10. J Mol Cell Cardiol. 1998 Mar;30(3):495-507 [PMID: 9515027]
  11. In Vitro Cell Dev Biol Anim. 1998 Feb;34(2):149-53 [PMID: 9542652]
  12. Hum Cell. 1998 Mar;11(1):3-12 [PMID: 9710715]
  13. J Immunol. 1998 Oct 1;161(7):3375-83 [PMID: 9759854]
  14. Cancer Res. 1998 Nov 15;58(22):5201-5 [PMID: 9823333]
  15. Cell Death Differ. 1998 Apr;5(4):313-20 [PMID: 10200477]
  16. Invest Ophthalmol Vis Sci. 1999 May;40(6):1091-101 [PMID: 10235542]
  17. Ophthalmic Res. 1999;31(4):287-96 [PMID: 10325544]
  18. Arch Ophthalmol. 2001 Nov;119(11):1597-604 [PMID: 11709009]
  19. Br J Pharmacol. 2002 Feb;135(4):1069-77 [PMID: 11861336]
  20. Br J Ophthalmol. 2002 Mar;86(3):306-10 [PMID: 11864889]
  21. Am J Physiol Gastrointest Liver Physiol. 2002 May;282(5):G825-34 [PMID: 11960779]
  22. Biochem J. 2002 Oct 1;367(Pt 1):145-55 [PMID: 12084011]
  23. In Vitro. 1981 Jan;17(1):1-19 [PMID: 6260624]
  24. Invest Ophthalmol Vis Sci. 1982 Mar;22(3):351-8 [PMID: 7061208]
  25. Invest Ophthalmol Vis Sci. 1988 Nov;29(11):1656-62 [PMID: 3182201]
  26. In Vitro Cell Dev Biol. 1989 Nov;25(11):1065-72 [PMID: 2592302]
  27. J Clin Invest. 1993 Apr;91(4):1713-20 [PMID: 8386193]
  28. Invest Ophthalmol Vis Sci. 1993 May;34(6):2112-23 [PMID: 8387979]
  29. Biochem Biophys Res Commun. 1993 May 28;193(1):19-25 [PMID: 8503906]
  30. J Cell Biol. 1994 Feb;124(4):619-26 [PMID: 8106557]
  31. Exp Cell Res. 1994 Apr;211(2):314-21 [PMID: 8143779]
  32. FEBS Lett. 1994 May 23;345(1):43-6 [PMID: 8194597]
  33. Invest Ophthalmol Vis Sci. 1994 Oct;35(11):3952-7 [PMID: 7928194]
  34. Invest Ophthalmol Vis Sci. 1995 Jan;36(1):32-40 [PMID: 7822156]
  35. Exp Cell Res. 1995 Feb;216(2):380-7 [PMID: 7843282]
  36. Cell. 1995 Jun 2;81(5):801-9 [PMID: 7774019]
  37. Nature. 1995 Jul 6;376(6535):37-43 [PMID: 7596430]
  38. Cornea. 1995 Jul;14(4):372-81 [PMID: 7545565]
  39. Biochem Mol Biol Int. 1995 Apr;35(5):1085-92 [PMID: 7549927]
  40. Exp Neurol. 1995 Oct;135(2):153-9 [PMID: 7589326]
  41. Science. 1995 Nov 24;270(5240):1326-31 [PMID: 7481820]
  42. J Invest Dermatol. 1995 Dec;105(6):810-5 [PMID: 7490476]
  43. Oncogene. 1996 May 2;12(9):1847-54 [PMID: 8649844]
  44. J Cell Biol. 1996 Jun;133(5):1041-51 [PMID: 8655577]
  45. Invest Ophthalmol Vis Sci. 1996 Jul;37(8):1582-92 [PMID: 8675401]
  46. J Cell Biol. 1996 Aug;134(3):793-9 [PMID: 8707856]
  47. Cell. 1996 Oct 18;87(2):171 [PMID: 8861900]
  48. J Neurochem. 1996 Nov;67(5):1908-20 [PMID: 8863495]
  49. Invest Ophthalmol Vis Sci. 1997 Mar;38(3):779-82 [PMID: 9071233]
  50. Oncogene. 1997 Mar 13;14(10):1207-14 [PMID: 9121770]
  51. Cytometry. 1997 May 1;28(1):81-9 [PMID: 9136759]
  52. Invest Ophthalmol Vis Sci. 1999 Nov;40(12):2827-32 [PMID: 10549642]
  53. Exp Eye Res. 1999 Nov;69(5):547-53 [PMID: 10548475]
  54. Nephron. 1999;83(4):341-51 [PMID: 10575296]
  55. Acta Ophthalmol Scand. 2000 Apr;78(2):130-6 [PMID: 10794243]
  56. Blood. 2000 Aug 1;96(3):1030-8 [PMID: 10910919]
  57. Invest Ophthalmol Vis Sci. 2000 Aug;41(9):2623-32 [PMID: 10937575]

MeSH Term

Apoptosis
Blotting, Western
Caspase 3
Caspases
Cell Line
Endothelium, Corneal
Enzyme Activation
Enzyme Inhibitors
Humans
Immunohistochemistry
Microscopy, Electron
Poly(ADP-ribose) Polymerases
Staurosporine

Chemicals

Enzyme Inhibitors
Poly(ADP-ribose) Polymerases
CASP3 protein, human
Caspase 3
Caspases
Staurosporine

Word Cloud

Created with Highcharts 10.0.0staurosporineapoptosisendothelialcellHCEChoursdeathinducedcorneal312sheddingcaspase-3cellsstoragehumanlineincubationDNAformassessedusingwesternblotactivityimmunocytochemistrycleavedPARPultrastructuralfeaturesconfirmedactivationBACKGROUND:ApoptosisprobablyplayskeypartlossorganculturewellhypothermicHowevermechanismsunderlyingpoorlyunderstoodresponseknowninducerinvestigatedgaininsightsintracellularmodulatorsparticipateMETHODS:ImmortalisedHCECsstudied62402microMCellmonitoredHoechst33342fluorescentstainingcombinedpropidiumiodideusedapoptosis/necrosisquantificationmorphologicalexaminationactiveproteolyticdetectionpolyADP-ribosepolymerasescreenedvehicleRESULTS:specificapoptoticnaturetreatedtypicalcondensationincreasedtimeCaspase-3detectedearlyexposurepeakingpresenceCONCLUSIONS:datasuggeststronglymainconsequenceStaurosporineinvolvesusefulmodelstudystrategiesinhibitionMechanisms

Similar Articles

Cited By