Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis.

Lily L Remsing, Ana M González, Mohammad Nur-e-Alam, M José Fernández-Lozano, Alfredo F Braña, Uwe Rix, Marcos A Oliveira, Carmen Méndez, José A Salas, Jürgen Rohr
Author Information
  1. Lily L Remsing: Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 907 Rose Street, Lexington, Kentucky 40536-0082, USA.

Abstract

To gain initial structure-activity relationships regarding the highly functionalized pentyl side chain attached at C-3 of mithramycin (MTM), we focused on a post-polyketide synthase (post-PKS) tailoring step of the MTM biosynthesis by Streptomyces argillaceus ATCC 12956, which was proposed to be catalyzed by ketoreductase (KR) MtmW. In this last step of the MTM biosynthesis, a keto group of the pentyl side chain is reduced to a secondary alcohol, and we anticipated the generation of an MTM derivative with an additional keto group in the 3-side chain. Insertional inactivation of mtmW, a gene located ca. 8 kb downstream of the mithramycin-PKS genes, yielded an S. argillaceus mutant, which accumulated three new mithramycin analogues, namely mithramycin SA, demycarosyl-mithramycin SK, and mithramycin SK (MTM-SK). The structures of these three compounds confirmed indirectly the proposed role of MtmW in MTM biosynthesis. However, the new mithramycin derivatives bear unexpectedly shorter 3-side chains (ethyl or butyl) than MTM, presumably caused by nonenzymatic rearrangement or cleavage reactions of the initially formed pentyl side chain with a reactive beta-dicarbonyl functional group. The major product, MTM-SK, was tested in vitro against a variety of human cancer cell lines, as well as in an in vitro toxicity assay, and showed an improved therapeutic index, in comparison to the parent drug, MTM.

References

  1. N Engl J Med. 1965 Jan 21;272:111-8 [PMID: 14224214]
  2. Antimicrob Agents Chemother. 2000 May;44(5):1266-75 [PMID: 10770761]
  3. Biochemistry. 1993 Jul 6;32(26):6588-604 [PMID: 8329387]
  4. Mol Gen Genet. 2001 Feb;264(6):827-35 [PMID: 11254130]
  5. Nucleic Acids Res. 1985 Dec 20;13(24):8695-714 [PMID: 2934687]
  6. J Mol Biol. 1992 Jan 5;223(1):259-79 [PMID: 1731073]
  7. Eur J Biochem. 1999 Mar;260(3):619-26 [PMID: 10102989]
  8. J Bacteriol. 1999 Jan;181(2):642-7 [PMID: 9882681]
  9. Nat Prod Rep. 2002 Oct;19(5):542-80 [PMID: 12430723]
  10. J Bacteriol. 1997 May;179(10):3354-7 [PMID: 9150235]
  11. J Nat Prod. 2002 Aug;65(8):1091-5 [PMID: 12193009]
  12. J Mol Biol. 1995 Sep 1;251(5):674-89 [PMID: 7666419]
  13. Org Lett. 2002 Mar 21;4(6):957-60 [PMID: 11893195]
  14. J Biol Chem. 2000 Feb 4;275(5):3065-74 [PMID: 10652287]
  15. J Bone Joint Surg Am. 1972 Dec;54(8):1730-6 [PMID: 4265871]
  16. Chem Biol. 1999 Jan;6(1):19-30 [PMID: 9889148]
  17. Science. 1999 Nov 19;286(5444):1571-7 [PMID: 10567266]
  18. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5509-13 [PMID: 2196570]
  19. Gene. 1996 Jun 12;172(1):87-91 [PMID: 8654997]
  20. J Lab Clin Med. 1973 Oct;82(4):576-86 [PMID: 4271121]
  21. Chem Biol. 2000 Dec;7(12 ):943-55 [PMID: 11137817]
  22. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 [PMID: 271968]
  23. Microbiology. 1997 Oct;143 ( Pt 10):3251-62 [PMID: 9353926]
  24. Microbiology. 2000 Jan;146 ( Pt 1):139-46 [PMID: 10658660]
  25. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  26. J Am Chem Soc. 2002 Feb 27;124(8):1606-14 [PMID: 11853433]
  27. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387-95 [PMID: 6546423]
  28. Gene. 1993 Feb 14;124(1):133-4 [PMID: 8382652]
  29. Biochemistry. 1993 Jan 19;32(2):463-71 [PMID: 8422355]
  30. J Antibiot (Tokyo). 1998 Mar;51(3):267-74 [PMID: 9589061]
  31. J Nat Prod. 1999 Jan;62(1):119-21 [PMID: 9917296]
  32. Mol Biochem Parasitol. 1993 Mar;58(1):7-15 [PMID: 7681547]
  33. J Antibiot (Tokyo). 1990 Jul;43(7):883-9 [PMID: 2117602]
  34. J Bacteriol. 1998 Sep;180(18):4929-37 [PMID: 9733697]
  35. Mol Gen Genet. 2000 Jan;262(6):991-1000 [PMID: 10660060]
  36. J Med Chem. 2002 Feb 14;45(4):818-40 [PMID: 11831894]
  37. Invest Ophthalmol Vis Sci. 1990 Sep;31(9):1856-62 [PMID: 2145243]
  38. JAMA. 1970 Aug 17;213(7):1153-7 [PMID: 5468261]
  39. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]

Grants

  1. R01 CA091901/NCI NIH HHS
  2. CA091901/NCI NIH HHS

MeSH Term

Antibiotics, Antineoplastic
Carbohydrate Sequence
Combinatorial Chemistry Techniques
Drug Screening Assays, Antitumor
Gene Silencing
Humans
Molecular Sequence Data
Mutagenesis, Insertional
Nuclear Magnetic Resonance, Biomolecular
Oxidoreductases
Plicamycin
Streptomyces
Trisaccharides
Tumor Cells, Cultured

Chemicals

Antibiotics, Antineoplastic
Trisaccharides
Oxidoreductases
Plicamycin

Word Cloud

Created with Highcharts 10.0.0mithramycinMTMchainbiosynthesispentylsideargillaceusgroupthreenewSKstepStreptomycesproposedMtmWketo3-sideSAdemycarosyl-mithramycinMTM-SKvitroimprovedtherapeuticindexdruggaininitialstructure-activityrelationshipsregardinghighlyfunctionalizedattachedC-3focusedpost-polyketidesynthasepost-PKStailoringATCC12956catalyzedketoreductaseKRlastreducedsecondaryalcoholanticipatedgenerationderivativeadditionalInsertionalinactivationmtmWgenelocatedca8kbdownstreammithramycin-PKSgenesyieldedSmutantaccumulatedanaloguesnamelystructurescompoundsconfirmedindirectlyroleHoweverderivativesbearunexpectedlyshorterchainsethylbutylpresumablycausednonenzymaticrearrangementcleavagereactionsinitiallyformedreactivebeta-dicarbonylfunctionalmajorproducttestedvarietyhumancancercelllineswelltoxicityassayshowedcomparisonparentMithramycinnovelantitumorSK:productsgeneratedproducercombinatorial

Similar Articles

Cited By