Olfactory learning in individually assayed Drosophila larvae.

Sabine Scherer, Reinhard F Stocker, Bertram Gerber
Author Information
  1. Sabine Scherer: University of Fribourg, Department of Biology & Program in Neuroscience, CH 1700 Fribourg, Switzerland.

Abstract

Insect and mammalian olfactory systems are strikingly similar. Therefore, Drosophila can be used as a simple model for olfaction and olfactory learning. The brain of adult Drosophila, however, is still complex. We therefore chose to work on the larva with its yet simpler but adult-like olfactory system and provide evidence for olfactory learning in individually assayed Drosophila larvae. We developed a differential conditioning paradigm in which odorants are paired with positive ("+" fructose) or negative ("-" quinine or sodium chloride) gustatory reinforcers. Test performance of individuals from two treatment conditions is compared-one received odorant A with the positive reinforcer and odorant B with a negative reinforcer (A+/B-); animals from the other treatment condition were trained reciprocally (A-/B+). During test, differences in choice between A and B of individuals having undergone either A+/B- or A-/B+ training therefore indicate associative learning. We provide such evidence for both combinations of reinforcers; this was replicable across repetitions, laboratories, and experimenters. We further show that breaks improve performance, in accord with basic principles of associative learning. The present individual assay will facilitate electrophysiological studies, which necessarily use individuals. As such approaches are established for the larval neuromuscular synapse, but not in adults, an individual larval learning paradigm will serve to link behavioral levels of analysis to synaptic physiology.

References

  1. Curr Biol. 2002 Oct 29;12(21):1877-84 [PMID: 12419190]
  2. Microsc Res Tech. 1999 Dec 15;47(6):401-15 [PMID: 10607380]
  3. Science. 2000 Apr 28;288(5466):672-5 [PMID: 10784450]
  4. Cell. 2001 Mar 9;104(5):661-73 [PMID: 11257221]
  5. J Neurogenet. 1997 Nov;11(3-4):231-54 [PMID: 10876655]
  6. Neuron. 2001 Mar;29(3):551-4 [PMID: 11301013]
  7. Nat Rev Genet. 2001 Nov;2(11):879-90 [PMID: 11715043]
  8. Cell Tissue Res. 1994 Jan;275(1):3-26 [PMID: 8118845]
  9. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2664-8 [PMID: 8146172]
  10. Annu Rev Neurosci. 2001;24:1283-309 [PMID: 11520934]
  11. J Neurosci. 1999 May 1;19(9):3337-44 [PMID: 10212293]
  12. J Neurosci. 1995 Mar;15(3 Pt 1):1617-30 [PMID: 7891123]
  13. Nature. 2001 Jul 5;412(6842):43-8 [PMID: 11452299]
  14. Neuron. 1996 Mar;16(3):541-9 [PMID: 8785051]
  15. Curr Opin Neurobiol. 2000 Dec;10(6):790-5 [PMID: 11240291]
  16. J Neurobiol. 1997 Mar;32(3):281-97 [PMID: 9058321]
  17. Cell. 1995 Apr 7;81(1):107-15 [PMID: 7720066]
  18. Nature. 1996 Feb 1;379(6564):449-51 [PMID: 8559249]
  19. J Comp Neurol. 2002 Nov 11;453(2):157-67 [PMID: 12373781]
  20. J Neurogenet. 1995 Nov;10(2):119-35 [PMID: 8592272]
  21. Chem Senses. 2001 Feb;26(2):207-13 [PMID: 11238253]
  22. Science. 2000 Mar 24;287(5461):2204-15 [PMID: 10731134]
  23. Microsc Res Tech. 1997 Dec 15;39(6):547-63 [PMID: 9438253]
  24. Science. 1979 Oct 5;206(4414):93-6 [PMID: 17812455]
  25. J Neurogenet. 1985 Feb;2(1):1-30 [PMID: 4020527]
  26. J Insect Physiol. 2000 Feb;46(2):135-144 [PMID: 12770245]
  27. Nat Neurosci. 2003 Mar;6(3):267-73 [PMID: 12563263]
  28. Genetics. 1990 Feb;124(2):293-302 [PMID: 2106470]
  29. Microsc Res Tech. 2001 Dec 1;55(5):284-96 [PMID: 11754508]
  30. Proc Biol Sci. 2000 Oct 22;267(1457):2119-25 [PMID: 11416918]
  31. J Comp Neurol. 2002 Apr 15;445(4):374-87 [PMID: 11920714]
  32. J Neurosci. 1999 Aug 1;19(15):6599-609 [PMID: 10414987]
  33. J Neurosci. 1994 Jan;14(1):68-74 [PMID: 8283252]
  34. Learn Mem. 2001 Jan-Feb;8(1):1-10 [PMID: 11160758]
  35. Trends Neurosci. 2001 May;24(5):251-4 [PMID: 11311363]
  36. Behav Genet. 1996 Jan;26(1):49-54 [PMID: 8852731]
  37. Annu Rev Neurosci. 1997;20:595-631 [PMID: 9056726]
  38. Microsc Res Tech. 2000 Apr 1;49(1):14-25 [PMID: 10757875]

MeSH Term

Animals
Association Learning
Conditioning, Psychological
Drosophila
Larva
Olfactory Pathways
Reinforcement, Psychology
Smell
Taste

Word Cloud

Created with Highcharts 10.0.0learningolfactoryDrosophilaindividualsthereforeprovideevidenceindividuallyassayedlarvaeparadigmpositivenegativereinforcersperformancetreatmentodorantreinforcerBA+/B-A-/B+associativeindividualwilllarvalInsectmammaliansystemsstrikinglysimilarThereforecanusedsimplemodelolfactionbrainadulthoweverstillcomplexchoseworklarvayetsimpleradult-likesystemdevelopeddifferentialconditioningodorantspaired"+"fructose"-"quininesodiumchloridegustatoryTesttwoconditionscompared-onereceivedanimalsconditiontrainedreciprocallytestdifferenceschoiceundergoneeithertrainingindicatecombinationsreplicableacrossrepetitionslaboratoriesexperimentersshowbreaksimproveaccordbasicprinciplespresentassayfacilitateelectrophysiologicalstudiesnecessarilyuseapproachesestablishedneuromuscularsynapseadultsservelinkbehaviorallevelsanalysissynapticphysiologyOlfactory

Similar Articles

Cited By