Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation.

Neil Hardingham, Stanislaw Glazewski, Pavel Pakhotin, Keiko Mizuno, Paul F Chapman, K Peter Giese, Kevin Fox
Author Information
  1. Neil Hardingham: School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom.

Abstract

Experience-dependent plasticity can be induced in the barrel cortex by removing all but one whisker, leading to potentiation of the neuronal response to the spared whisker. To determine whether this form of potentiation depends on synaptic plasticity, we studied long-term potentiation (LTP) and sensory-evoked potentials in the barrel cortex of alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII)T286A mutant mice. We studied three different forms of LTP induction: theta-burst stimulation, spike pairing, and postsynaptic depolarization paired with low-frequency presynaptic stimulation. None of these protocols produced LTP in alphaCaMKIIT286A mutant mice, although all three were successful in wild-type mice. To study synaptic plasticity in vivo, we measured sensory-evoked potentials in the barrel cortex and found that single-whisker experience selectively potentiated synaptic responses evoked by sensory stimulation of the spared whisker in wild types but not in alphaCaMKIIT286A mice. These results demonstrate that alphaCaMKII autophosphorylation is required for synaptic plasticity in the neocortex, whether induced by a variety of LTP induction paradigms or by manipulation of sensory experience, thereby strengthening the case that the two forms of plasticity are related.

References

  1. Science. 1999 Apr 2;284(5411):162-6 [PMID: 10102820]
  2. Nat Neurosci. 1998 Jun;1(2):114-8 [PMID: 10195125]
  3. J Neurosci. 1999 Oct 15;19(20):9117-25 [PMID: 10516329]
  4. Neuron. 2000 Jul;27(1):1-3 [PMID: 10939321]
  5. Neuron. 2000 Jul;27(1):45-56 [PMID: 10939330]
  6. Nat Neurosci. 2000 Sep;3(9):911-8 [PMID: 10966622]
  7. J Neurosci. 2001 Jun 1;21(11):3881-94 [PMID: 11356876]
  8. J Neurophysiol. 2001 Jul;86(1):326-38 [PMID: 11431514]
  9. Nat Rev Neurosci. 2002 Mar;3(3):175-90 [PMID: 11994750]
  10. Neuroscience. 2002;111(4):799-814 [PMID: 12031405]
  11. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7740-5 [PMID: 12032353]
  12. Nature. 2002 Jul 18;418(6895):326-31 [PMID: 12124625]
  13. J Neurosci. 2002 Aug 15;22(16):6991-7005 [PMID: 12177197]
  14. Neuron. 2002 Oct 24;36(3):483-91 [PMID: 12408850]
  15. Science. 1992 Jul 10;257(5067):201-6 [PMID: 1378648]
  16. Exp Brain Res. 1978 Nov 15;33(3-4):371-94 [PMID: 215431]
  17. Brain Res. 1979 Jul 27;171(1):11-28 [PMID: 223730]
  18. Trends Neurosci. 1988 Dec;11(12):549-57 [PMID: 2471312]
  19. J Neurosci Methods. 1987 Dec;22(2):113-8 [PMID: 2830438]
  20. Nature. 1987 Apr 16-22;326(6114):694-7 [PMID: 3561512]
  21. Physiol Rev. 1985 Jan;65(1):37-100 [PMID: 3880898]
  22. Nature. 1970 Oct 31;228(5270):477-8 [PMID: 5482506]
  23. J Physiol. 1970 Feb;206(2):419-36 [PMID: 5498493]
  24. J Neurosci Methods. 1980 Aug;2(4):431-2 [PMID: 7412368]
  25. J Comp Neurol. 1995 Jul 3;357(3):465-81 [PMID: 7673479]
  26. J Neurosci. 1994 Dec;14(12):7665-79 [PMID: 7996202]
  27. Science. 1993 Jun 4;260(5113):1518-21 [PMID: 8502997]
  28. Science. 1996 Apr 19;272(5260):421-3 [PMID: 8602534]
  29. J Neurophysiol. 1996 Apr;75(4):1714-29 [PMID: 8727408]
  30. Neuron. 1996 Sep;17(3):491-9 [PMID: 8816712]
  31. Cereb Cortex. 1996 Nov-Dec;6(6):751-8 [PMID: 8922331]
  32. Science. 1997 Jan 10;275(5297):213-5 [PMID: 8985014]
  33. Science. 1997 Jun 27;276(5321):2042-5 [PMID: 9197267]
  34. Science. 1998 Feb 6;279(5352):870-3 [PMID: 9452388]
  35. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9596-601 [PMID: 9689126]
  36. Neuropharmacology. 1998 Apr-May;37(4-5):581-92 [PMID: 9704999]

Grants

  1. G0200413/Medical Research Council

MeSH Term

Animals
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Calcium-Calmodulin-Dependent Protein Kinases
Electric Stimulation
Evoked Potentials
Female
In Vitro Techniques
Long-Term Potentiation
Male
Mice
Mice, Mutant Strains
Mutation
Neocortex
Neuronal Plasticity
Patch-Clamp Techniques
Phosphorylation
Physical Stimulation
Sensory Deprivation
Somatosensory Cortex
Synapses
Theta Rhythm
Vibrissae

Chemicals

Calcium-Calmodulin-Dependent Protein Kinase Type 2
Calcium-Calmodulin-Dependent Protein Kinases

Word Cloud

Created with Highcharts 10.0.0plasticitysynapticpotentiationLTPmicebarrelcortexwhiskerstimulationinducedsparedwhetherstudiedlong-termsensory-evokedpotentialsalpha-calcium/calmodulin-dependentproteinkinaseIIalphaCaMKIImutantthreeformsalphaCaMKIIT286AexperiencesensoryautophosphorylationExperience-dependentcanremovingoneleadingneuronalresponsedetermineformdependsT286Adifferentinduction:theta-burstspikepairingpostsynapticdepolarizationpairedlow-frequencypresynapticNoneprotocolsproducedalthoughsuccessfulwild-typestudyvivomeasuredfoundsingle-whiskerselectivelypotentiatedresponsesevokedwildtypesresultsdemonstraterequiredneocortexvarietyinductionparadigmsmanipulationtherebystrengtheningcasetworelatedNeocorticalexperience-dependentrequire

Similar Articles

Cited By