Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains.

Adrian Y C Wong, Bruce P Graham, Brian Billups, Ian D Forsythe
Author Information
  1. Adrian Y C Wong: Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, United Kingdom.

Abstract

Short-term facilitation and depression have a profound influence on transmission at many glutamatergic synapses, particularly during trains of stimuli. A major component of these processes is postsynaptic receptor desensitization. Both presynaptic and postsynaptic mechanisms can contribute to synaptic efficacy, but it is often difficult to define their respective contributions. Blockers of desensitization such as cyclothiazide (CTZ) can be used, but many of these drugs have nonspecific effects on transmitter release, complicating attempts to define synaptic effectiveness under physiological conditions. We describe and validate a new method to minimize desensitization during trains of synaptic stimuli that is based on the low-affinity competitive glutamate receptor antagonists gamma-D-glutamylglycine or kynurenic acid. A computational model of AMPA receptor kinetics shows that the mechanism can be accounted for by simple competitive antagonism of AMPA receptors, where the rapid off-rate of the antagonist permits re-equilibration between blocked and unblocked pools during the interstimulus interval. Our results at the calyx of Held show that desensitization makes little contribution to synaptic depression at frequencies below 10 Hz, but at higher frequencies it makes an important contribution, with accumulating desensitization masking short-term facilitation and causing an underestimation of quantal content. This novel method of protection from desensitization is compatible with physiological studies but cannot be used in conjunction with CTZ. Although presynaptic vesicle depletion makes the dominant contribution to short-term depression, our results show that AMPA receptor desensitization contributes to the depression at auditory synapses after hearing onset and in a frequency-dependent manner.

References

J Neurophysiol. 1999 Jun;81(6):3096-9 [PMID: 10368425]
Neuron. 1999 Jun;23(2):399-409 [PMID: 10399944]
Neuron. 1999 May;23(1):159-70 [PMID: 10402202]
J Physiol. 2000 Mar 15;523 Pt 3:667-84 [PMID: 10718746]
Trends Neurosci. 2000 Jul;23(7):305-12 [PMID: 10856940]
J Neurosci. 2000 Dec 15;20(24):9162-73 [PMID: 11124994]
J Neurosci. 2001 Jan 15;21(2):444-61 [PMID: 11160425]
J Neurochem. 2001 May;77(4):1108-15 [PMID: 11359876]
Trends Neurosci. 2001 Jul;24(7):381-5 [PMID: 11410267]
J Neurosci. 2001 Aug 1;21(15):5574-86 [PMID: 11466429]
J Physiol. 2001 Aug 1;534(Pt 3):861-71 [PMID: 11483715]
J Neurosci. 2001 Oct 15;21(20):7889-900 [PMID: 11588162]
J Neurosci. 2001 Oct 15;21(20):8062-71 [PMID: 11588179]
Neuron. 2001 Oct 25;32(2):301-13 [PMID: 11683999]
J Neurosci. 2001 Dec 15;21(24):9638-54 [PMID: 11739574]
J Neurophysiol. 2002 Jan;87(1):140-8 [PMID: 11784736]
J Neurosci. 2002 Feb 1;22(3):728-39 [PMID: 11826102]
Nature. 2002 May 16;417(6886):245-53 [PMID: 12015593]
Neuron. 2002 May 16;34(4):613-21 [PMID: 12062044]
Pflugers Arch. 2002 Aug;444(5):663-9 [PMID: 12194020]
J Neurosci. 2002 Dec 15;22(24):10567-79 [PMID: 12486149]
Neuron. 2002 Dec 19;36(6):1127-43 [PMID: 12495627]
Mol Pharmacol. 1992 Nov;42(5):864-71 [PMID: 1279377]
J Physiol. 1992 Dec;458:261-87 [PMID: 1338788]
Neuron. 1992 Jul;9(1):173-86 [PMID: 1352983]
Science. 1992 Nov 27;258(5087):1498-501 [PMID: 1359647]
Proc Natl Acad Sci U S A. 1989 Feb;86(4):1411-5 [PMID: 2537497]
Proc Natl Acad Sci U S A. 1988 Jun;85(12):4562-6 [PMID: 2898144]
J Physiol. 1988 Feb;396:515-33 [PMID: 2900892]
Neuron. 1993 Dec;11(6):1069-82 [PMID: 7506043]
Neuron. 1995 Nov;15(5):1097-107 [PMID: 7576653]
Neuron. 1995 Jul;15(1):193-204 [PMID: 7619522]
Neuron. 1993 Jun;10(6):1185-96 [PMID: 7686382]
J Neurosci. 1993 Aug;13(8):3496-509 [PMID: 7688040]
Biophys J. 1995 Jan;68(1):137-46 [PMID: 7711235]
J Physiol. 1995 Jan 15;482 ( Pt 2):309-15 [PMID: 7714824]
Annu Rev Physiol. 1995;57:495-519 [PMID: 7778875]
J Neurosci. 1994 Aug;14(8):4998-5010 [PMID: 7913958]
Receptors Channels. 1993;1(4):267-78 [PMID: 7915948]
Science. 1994 Nov 11;266(5187):1059-62 [PMID: 7973663]
Mol Pharmacol. 1994 Jul;46(1):129-38 [PMID: 8058047]
J Physiol. 1995 Oct 15;488 ( Pt 2):387-406 [PMID: 8568678]
Nature. 1996 Aug 29;382(6594):807-10 [PMID: 8752273]
J Neurosci. 1996 Nov 1;16(21):6634-47 [PMID: 8824304]
J Neurophysiol. 1996 Sep;76(3):1566-71 [PMID: 8890276]
J Neurosci. 1996 Dec 1;16(23):7496-504 [PMID: 8922405]
Trends Neurosci. 1996 Mar;19(3):96-101 [PMID: 9054063]
J Neurosci. 1997 Jun 15;17(12):4672-87 [PMID: 9169528]
Neural Comput. 1997 Aug 15;9(6):1179-209 [PMID: 9248061]
Science. 1998 Jun 5;280(5369):1596-9 [PMID: 9616121]
Nature. 1998 Jul 23;394(6691):384-8 [PMID: 9690475]

Grants

  1. /Wellcome Trust

MeSH Term

Action Potentials
Animals
Auditory Pathways
Benzothiadiazines
Brain Stem
Calcium
Dipeptides
Diuretics
Electric Stimulation
Excitatory Amino Acid Antagonists
Excitatory Postsynaptic Potentials
In Vitro Techniques
Models, Neurological
Neural Inhibition
Neurons
Patch-Clamp Techniques
Presynaptic Terminals
Rats
Rats, Inbred Strains
Receptors, AMPA
Sodium Chloride Symporter Inhibitors
Synaptic Transmission
Time Factors

Chemicals

Benzothiadiazines
Dipeptides
Diuretics
Excitatory Amino Acid Antagonists
Receptors, AMPA
Sodium Chloride Symporter Inhibitors
gamma-glutamylglycine
Calcium

Word Cloud

Similar Articles

Cited By