High dose rate brachytherapy in the treatment of prostate cancer.

Frank Vicini, Carlos Vargas, Gary Gustafson, Gregory Edmundson, Alvaro Martinez
Author Information
  1. Frank Vicini: Department of Radiation Oncology, William Beaumont Hospital, 3601 W. 13 Mile Rd, Royal Oak, MI 48072, USA. fvicini@beaumont.edu

Abstract

The optimal treatment of patients with localized prostate cancer remains controversial. Significant clinical data are available, however, demonstrating that patients treated with radiation therapy (RT) have a significantly better outcome as the dose to the gland is increased. What remains debatable, however, is how to best deliver these higher doses of RT without significantly increasing normal tissue toxicities. Conformal high dose rate brachytherapy (C-HDR BT) represents an alternative means of precise dose delivery that offers similar tumoricidal effects as three-dimensional (3D) conformal external beam radiotherapy (EBRT) or permanent interstitial prostate seed implants with potential additional advantages. Since C-HDR BT consists of temporarily placing afterloading needles or catheters directly into the prostate gland under real-time ultrasound guidance, a steep dose gradient between the prostate and adjacent normal tissues can be generated that is minimally affected by organ motion and edema or treatment setup uncertainties. The ability to control the amount of time the single HDR radioactive source "dwells" at each position along the length of each brachytherapy catheter further enhances the conformity of the dose. In addition, recent radiobiological data on prostate cancer treatment suggest that C-HDR BT should produce tumor control and late normal tissue side effects that are at least as good as achieved with conventional fractionation, with the additional possibility that acute side effects might be reduced. Published data from several groups performing C-HDR BT as boosts in patients with locally advanced disease have supported these assumptions. Combined with the physical advantages discussed above, C-HDR BT should provide similar tumor control as 3D conformal EBRT with the added advantages of reduced treatment times, less acute toxicity, and no additional technological requirements to account and correct for treatment setup uncertainties and organ motion. Due to the success of C-HDR BT as boost treatment in locally advanced disease, this form of radiation treatment has recently been applied to low-risk prostate cancer patients as an alternative brachytherapy technique to permanent interstitial seed implantation. Advantages in this setting include an improved ability to define and deliver the prescribed dose, a significantly shortened treatment schedule compared to 3D conformal EBRT, and the fact that patients are not radioactive after implantation.

References

  1. Cancer J Sci Am. 1999 May-Jun;5(3):152-8 [PMID: 10367171]
  2. Semin Urol Oncol. 1997 Nov;15(4):239-43 [PMID: 9421451]
  3. Lancet. 2002 Jul 13;360(9327):103-6 [PMID: 12126818]
  4. Int J Radiat Oncol Biol Phys. 1999 Feb 1;43(3):571-8 [PMID: 10078639]
  5. Int J Radiat Oncol Biol Phys. 2000 Jan 15;46(2):507-13 [PMID: 10661360]
  6. Int J Radiat Oncol Biol Phys. 2000 Oct 1;48(3):675-81 [PMID: 11020563]
  7. Int J Radiat Oncol Biol Phys. 2000 May 1;47(2):343-52 [PMID: 10802358]
  8. Int J Radiat Oncol Biol Phys. 2002 Jun 1;53(2):316-27 [PMID: 12023135]
  9. Urol Clin North Am. 2001 Aug;28(3):555-65 [PMID: 11590814]
  10. Cancer J Sci Am. 1997 Nov-Dec;3(6):346-52 [PMID: 9403047]
  11. Int J Radiat Oncol Biol Phys. 1997 May 1;38(2):311-7 [PMID: 9226317]
  12. Int J Radiat Oncol Biol Phys. 1995 Dec 1;33(5):1257-63 [PMID: 7493850]
  13. Med Phys. 2001 Apr;28(4):593-602 [PMID: 11339757]
  14. Eur Urol. 2002 Apr;41(4):420-6 [PMID: 12074814]
  15. Int J Radiat Oncol Biol Phys. 1998 Jun 1;41(3):525-33 [PMID: 9635698]
  16. Int J Radiat Oncol Biol Phys. 2001 Nov 15;51(4):1111-9 [PMID: 11704336]
  17. Int J Radiat Oncol Biol Phys. 1999 Jul 1;44(4):747-8 [PMID: 10386630]
  18. Tech Urol. 1997 Winter;3(4):190-4 [PMID: 9531101]
  19. Int J Radiat Oncol Biol Phys. 2001 Sep 1;51(1):1-3 [PMID: 11516843]
  20. Radiother Oncol. 2003 Feb;66(2):167-72 [PMID: 12648788]
  21. Int J Radiat Oncol Biol Phys. 2001 Jan 1;49(1):61-9 [PMID: 11163498]
  22. J Clin Oncol. 2000 Aug;18(15):2869-80 [PMID: 10920135]
  23. J Urol. 2003 Mar;169(3):974-9; discussion 979-80 [PMID: 12576825]
  24. Radiother Oncol. 1997 Sep;44(3):237-44 [PMID: 9380822]
  25. Int J Radiat Oncol Biol Phys. 2000 Jan 15;46(2):391-402 [PMID: 10661346]
  26. Int J Radiat Oncol Biol Phys. 2003 May 1;56(1):213-20 [PMID: 12694841]
  27. Int J Radiat Oncol Biol Phys. 2000 May 1;47(2):335-42 [PMID: 10802357]
  28. J Clin Oncol. 1997 Mar;15(3):1013-21 [PMID: 9060541]
  29. J Endourol. 2000 May;14(4):351-6 [PMID: 10910151]
  30. Int J Radiat Oncol Biol Phys. 2002 Jan 1;52(1):81-90 [PMID: 11777625]
  31. Int J Radiat Oncol Biol Phys. 2000 Mar 1;46(4):823-32 [PMID: 10705002]
  32. Eur Urol. 1997;32(4):385-90 [PMID: 9412793]
  33. Int J Radiat Oncol Biol Phys. 2002 Jan 1;52(1):6-13 [PMID: 11777617]
  34. Int J Radiat Oncol Biol Phys. 1998 Jun 1;41(3):501-10 [PMID: 9635695]
  35. Ann Med. 2000 Feb;32(1):57-63 [PMID: 10711579]
  36. Radiother Oncol. 2000 Dec;57(3):289-96 [PMID: 11104888]
  37. Int J Radiat Oncol Biol Phys. 2002 Aug 1;53(5):1097-105 [PMID: 12128107]
  38. Tech Urol. 2000 Jun;6(2):135-45 [PMID: 10798815]
  39. Int J Radiat Oncol Biol Phys. 2001 Dec 1;51(5):1200-8 [PMID: 11728678]
  40. World J Urol. 1997;15(4):252-6 [PMID: 9280054]
  41. Comput Aided Surg. 2000;5(4):289-95 [PMID: 11029161]
  42. Radiother Oncol. 1997 Sep;44(3):245-50 [PMID: 9380823]
  43. Cancer Control. 2001 Nov-Dec;8(6):511-21 [PMID: 11807421]
  44. Int J Radiat Oncol Biol Phys. 2001 Jul 15;50(4):1021-31 [PMID: 11429230]
  45. J Clin Oncol. 2000 Dec 1;18(23 ):3904-11 [PMID: 11099319]
  46. Cancer. 1998 Sep 1;83(5):989-1001 [PMID: 9731904]
  47. Int J Radiat Oncol Biol Phys. 2002 Jan 1;52(1):3-5 [PMID: 11777616]
  48. N Engl J Med. 1997 Jul 31;337(5):295-300 [PMID: 9233866]
  49. J Urol. 1997 Oct;158(4):1460-5 [PMID: 9302143]

MeSH Term

Brachytherapy
Humans
Male
Prostatic Neoplasms
Radiation Dosage

Word Cloud

Created with Highcharts 10.0.0treatmentprostatedoseC-HDRBTpatientscancerbrachytherapydatasignificantlynormaleffects3DconformalEBRTadditionaladvantagescontrolremainshoweverradiationRTglanddelivertissueratealternativesimilarpermanentinterstitialseedorganmotionsetupuncertaintiesabilityradioactivetumorsideacutereducedlocallyadvanceddiseaseimplantationoptimallocalizedcontroversialSignificantclinicalavailabledemonstratingtreatedtherapybetteroutcomeincreaseddebatablebesthigherdoseswithoutincreasingtoxicitiesConformalhighrepresentsmeansprecisedeliveryofferstumoricidalthree-dimensionalexternalbeamradiotherapyimplantspotentialSinceconsiststemporarilyplacingafterloadingneedlescathetersdirectlyreal-timeultrasoundguidancesteepgradientadjacenttissuescangeneratedminimallyaffectededemaamounttimesingleHDRsource"dwells"positionalonglengthcatheterenhancesconformityadditionrecentradiobiologicalsuggestproducelateleastgoodachievedconventionalfractionationpossibilitymightPublishedseveralgroupsperformingboostssupportedassumptionsCombinedphysicaldiscussedprovideaddedtimeslesstoxicitytechnologicalrequirementsaccountcorrectDuesuccessboostformrecentlyappliedlow-risktechniqueAdvantagessettingincludeimproveddefineprescribedshortenedschedulecomparedfactHigh

Similar Articles

Cited By