Junonia coenia densovirus-based vectors for stable transgene expression in Sf9 cells: influence of the densovirus sequences on genomic integration.

Hervé Bossin, Philippe Fournier, Corinne Royer, Patrick Barry, Pierre Cérutti, Sylvie Gimenez, Pierre Couble, Max Bergoin
Author Information
  1. Hervé Bossin: Unité de Virologie Moléculaire, UMR5087, INRA-CNRS-UMII, Station de Recherches de Pathologie Comparée, 30380 Saint-Christol-les-Alès, and Laboratoire de Pathologie Comparée, Université Montpellier II, France.

Abstract

The invertebrate parvovirus Junonia coenia densovirus (JcDNV) shares similarities with terminal hairpins and nonstructural (NS) protein activities of adeno-associated virus (AAV) despite their evolutionary divergence (B. Dumas, M. Jourdan, A. M. Pascaud, and M. Bergoin, Virology, 191:202-222, 1992, and C. Ding, M. Urabe, M. Bergoin, and R. M. Kotin, J. Virol. 76:338-345, 2002). We demonstrate here that persistent transgene expression in insect cells results from stable integration of transfected JcDNV-derived vectors into the host genome. To assess the integrative properties of JcDNV vectors, the green fluorescent protein (GFP) gfp marker gene was fused in frame into the major open reading frame (ORF1) of the viral sequence under the control of the P9 capsid protein promoter. In addition, the influence of the nonstructural proteins on the posttransfection maintenance of the vectors was examined by interruption of one or all three NS ORFs. Following transfection of Sf9 cells with each of the JcDNV constructs, clones showing persistent GFP expression were isolated. Structural analyses revealed that the majority of the JcDNV plasmid sequence was integrated into the genome of the fluorescent clones. Integration was observed whether or not NS proteins were expressed. However, the presence of NS genes in the constructs greatly influenced the number of integrated copies and their distribution in the host genome. Disruption of NS genes expression resulted in integration of head-to-tail concatemers at multiple sites within the genome. Further analyses demonstrated that the cis JcDNV 5' inverted terminal repeat region was the primary site of recombination. Sequence analyses of integration junctions showed rearrangements of both flanking and internal sequences for most integrations. These findings demonstrate that JcDNV vectors integrate into insect cells in a manner similar to AAV plasmids in mammalian cells.

References

  1. Virology. 2000 Mar 15;268(2):391-401 [PMID: 10704347]
  2. J Virol. 1997 Apr;71(4):3299-306 [PMID: 9060699]
  3. Contrib Microbiol. 2000;4:1-11 [PMID: 10941567]
  4. Contrib Microbiol. 2000;4:12-32 [PMID: 10941568]
  5. Contrib Microbiol. 2000;4:33-58 [PMID: 10941569]
  6. Gene. 2001 Jun 27;271(2):223-31 [PMID: 11418243]
  7. Insect Mol Biol. 2001 Jun;10(3):275-80 [PMID: 11437919]
  8. J Virol. 2001 Nov;75(22):11071-8 [PMID: 11602746]
  9. J Virol. 2002 Jan;76(1):338-45 [PMID: 11739698]
  10. In Vitro. 1977 Apr;13(4):213-7 [PMID: 68913]
  11. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 [PMID: 271968]
  12. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2211-5 [PMID: 2156265]
  13. Virology. 1990 Nov;179(1):403-9 [PMID: 2219730]
  14. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  15. Cytogenet Cell Genet. 1991;57(2-3):100-4 [PMID: 1914515]
  16. EMBO J. 1991 Dec;10(12):3941-50 [PMID: 1657596]
  17. Virology. 1992 Jan;186(1):207-18 [PMID: 1530777]
  18. Virology. 1992 Nov;191(1):202-22 [PMID: 1413502]
  19. EMBO J. 1992 Dec;11(13):5071-8 [PMID: 1334463]
  20. Methods Enzymol. 1993;218:309-21 [PMID: 8389965]
  21. J Virol. 1997 Oct;71(10):7951-9 [PMID: 9311886]
  22. J Virol. 1997 Dec;71(12):9231-47 [PMID: 9371582]
  23. J Virol. 1998 Jul;72(7):6195-8 [PMID: 9621089]
  24. Virology. 1999 Apr 25;257(1):62-72 [PMID: 10208921]
  25. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12381-5 [PMID: 12221283]
  26. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10039-43 [PMID: 7937833]
  27. J Virol. 1995 Nov;69(11):6917-24 [PMID: 7474109]
  28. Mol Cell Biol. 1996 May;16(5):2002-14 [PMID: 8628266]
  29. Adv Virus Res. 1996;47:303-51 [PMID: 8895835]
  30. J Virol Methods. 1996 Mar;57(1):47-60 [PMID: 8919823]
  31. In Vitro Cell Dev Biol Anim. 2000 Feb;36(2):117-24 [PMID: 10718368]

MeSH Term

Animals
Base Sequence
Densovirus
Gene Dosage
Genetic Vectors
Genome, Viral
Molecular Sequence Data
Plasmids
Spodoptera
Transfection
Transgenes
Viral Nonstructural Proteins
Virus Integration

Chemicals

Viral Nonstructural Proteins

Word Cloud

Created with Highcharts 10.0.0JcDNVMNSvectorsexpressioncellsintegrationgenomeproteinanalysesJunoniacoeniadensovirusterminalnonstructuralAAVBergoindemonstratepersistenttransgeneinsectstablehostfluorescentGFPframesequenceinfluenceproteinsSf9constructsclonesintegratedgenessequencesinvertebrateparvovirussharessimilaritieshairpinsactivitiesadeno-associatedvirusdespiteevolutionarydivergenceBDumasJourdanPascaudVirology191:202-2221992CDingUrabeRKotinJVirol76:338-3452002resultstransfectedJcDNV-derivedassessintegrativepropertiesgreengfpmarkergenefusedmajoropenreadingORF1viralcontrolP9capsidpromoteradditionposttransfectionmaintenanceexaminedinterruptiononethreeORFsFollowingtransfectionshowingisolatedStructuralrevealedmajorityplasmidIntegrationobservedwhetherexpressedHoweverpresencegreatlyinfluencednumbercopiesdistributionDisruptionresultedhead-to-tailconcatemersmultiplesiteswithindemonstratedcis5'invertedrepeatregionprimarysiterecombinationSequencejunctionsshowedrearrangementsflankinginternalintegrationsfindingsintegratemannersimilarplasmidsmammaliandensovirus-basedcells:genomic

Similar Articles

Cited By